Individual brain metabolic connectome indicator based on Kullback-Leibler Divergence Similarity Estimation predicts progression from mild cognitive impairment to Alzheimer’s dementia

连接体 痴呆 内科学 医学 分歧(语言学) 心理学 神经科学 疾病 语言学 哲学 功能连接
作者
Min Wang,Jiehui Jiang,Zhuangzhi Yan,Ian Alberts,Jingjie Ge,Huiwei Zhang,Chuantao Zuo,Jin‐Tai Yu,Axel Rominger,Kuangyu Shi
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:47 (12): 2753-2764 被引量:57
标识
DOI:10.1007/s00259-020-04814-x
摘要

Abstract Purpose Positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) reveals altered cerebral metabolism in individuals with mild cognitive impairment (MCI) and Alzheimer’s dementia (AD). Previous metabolic connectome analyses derive from groups of patients but do not support the prediction of an individual’s risk of conversion from present MCI to AD. We now present an individual metabolic connectome method, namely the Kullback-Leibler Divergence Similarity Estimation (KLSE), to characterize brain-wide metabolic networks that predict an individual’s risk of conversion from MCI to AD. Methods FDG-PET data consisting of 50 healthy controls, 332 patients with stable MCI, 178 MCI patients progressing to AD, and 50 AD patients were recruited from ADNI database. Each individual’s metabolic brain network was ascertained using the KLSE method. We compared intra- and intergroup similarity and difference between the KLSE matrix and group-level matrix, and then evaluated the network stability and inter-individual variation of KLSE. The multivariate Cox proportional hazards model and Harrell’s concordance index (C-index) were employed to assess the prediction performance of KLSE and other clinical characteristics. Results The KLSE method captures more pathological connectivity in the parietal and temporal lobes relative to the typical group-level method, and yields detailed individual information, while possessing greater stability of network organization (within-group similarity coefficient, 0.789 for sMCI and 0.731 for pMCI). Metabolic connectome expression was a superior predictor of conversion than were other clinical assessments (hazard ratio (HR) = 3.55; 95% CI, 2.77–4.55; P < 0.001). The predictive performance improved further upon combining clinical variables in the Cox model, i.e., C-indices 0.728 (clinical), 0.730 (group-level pattern model), 0.750 (imaging connectome), and 0.794 (the combined model). Conclusion The KLSE indicator identifies abnormal brain networks predicting an individual’s risk of conversion from MCI to AD, thus potentially constituting a clinically applicable imaging biomarker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛怀锐完成签到 ,获得积分10
刚刚
2秒前
太渊发布了新的文献求助10
2秒前
凉小天完成签到,获得积分10
3秒前
甜瓜发布了新的文献求助10
4秒前
feifan123发布了新的文献求助10
4秒前
椰子树完成签到,获得积分10
4秒前
AURORA发布了新的文献求助10
5秒前
汉堡包应助xun采纳,获得10
6秒前
学术吕布完成签到,获得积分10
6秒前
木沂完成签到 ,获得积分10
7秒前
7秒前
7秒前
杜俊发布了新的文献求助10
7秒前
Owen应助李荣杰采纳,获得30
9秒前
11秒前
13秒前
合适的梦菡完成签到,获得积分10
14秒前
15秒前
15秒前
甜瓜完成签到,获得积分10
16秒前
8R60d8应助欣欣子采纳,获得10
16秒前
16秒前
duan发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
21秒前
芋头cc发布了新的文献求助10
21秒前
21秒前
难摧发布了新的文献求助10
21秒前
俏皮的飞荷完成签到 ,获得积分10
23秒前
随影相伴完成签到 ,获得积分10
23秒前
24秒前
周七七发布了新的文献求助10
24秒前
凳子琪发布了新的文献求助10
24秒前
hzhang01完成签到,获得积分20
25秒前
瘪良科研完成签到,获得积分10
25秒前
xun发布了新的文献求助10
26秒前
木木彡发布了新的文献求助10
27秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792954
关于积分的说明 7804609
捐赠科研通 2449278
什么是DOI,文献DOI怎么找? 1303129
科研通“疑难数据库(出版商)”最低求助积分说明 626796
版权声明 601291