Predicting respiratory failure after pulmonary lobectomy using machine learning techniques

医学 呼吸衰竭 呼吸系统 可能性 重症监护医学 急性呼吸衰竭 优势比 临床决策 呼吸道疾病 急诊医学 逻辑回归 内科学 机械通风
作者
Siavash Bolourani,Ping Wang,Vihas Patel,Frank Manetta,Paul C. Lee
出处
期刊:Surgery [Elsevier]
卷期号:168 (4): 743-752 被引量:24
标识
DOI:10.1016/j.surg.2020.05.032
摘要

Background When pulmonary complications occur, postlobectomy patients have a higher mortality rate, increased length of stay, and higher readmission rates. Because of a lack of high-quality consolidated clinical data, it is challenging to assess and recognize at-risk thoracic patients to avoid respiratory failure and standardize outcome measures. Methods The National (Nationwide) Inpatient Sample for 2015 was used to establish our model. We identified 417 respiratory failure from a total of 4,062 patients who underwent pulmonary lobectomy. Risk factors for respiratory failure were identified, analyzed, and used in novel machine learning models to predict respiratory failure. Results Factors that contributed to increased odds of respiratory failure, such as preexisting chronic diseases, and intraoperative and postoperative events during hospitalization were identified. Two machine learning-based prediction models were generated and optimized by the knowledge accrued from the clinical course of postlobectomy patients. The first model, with high accuracy and specificity, is suited for performance evaluation, and the second model, with high sensitivity, is suited for clinical decision making. Conclusion We identified risk factors for respiratory failure after lobectomy and introduced 2 machine learning-based techniques to predict respiratory failure for quality review and clinical decision-making settings. Such techniques can be used to not only provide targeted support but also standardize quality peer review measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温水煮青蛙完成签到 ,获得积分10
1秒前
汉堡包应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
迷你的怀莲完成签到 ,获得积分10
5秒前
情怀应助云上人采纳,获得10
7秒前
8秒前
liudw完成签到,获得积分10
10秒前
10秒前
Siling完成签到 ,获得积分10
11秒前
12秒前
12秒前
xzc给xzc的求助进行了留言
13秒前
星辰大海应助俭朴的红牛采纳,获得10
13秒前
14秒前
工力所发布了新的文献求助30
17秒前
zzzzzzzzzzzzb发布了新的文献求助10
17秒前
delta发布了新的文献求助10
18秒前
酷波er应助朴实乐巧采纳,获得10
18秒前
shooin完成签到,获得积分10
20秒前
蔡小娜关注了科研通微信公众号
21秒前
zzzzzzzzzzzzb完成签到,获得积分10
22秒前
23秒前
xxxidgkris发布了新的文献求助30
25秒前
26秒前
天问完成签到 ,获得积分10
27秒前
27秒前
炼丹完成签到,获得积分10
27秒前
LX发布了新的文献求助10
28秒前
踏清秋完成签到,获得积分10
30秒前
云上人发布了新的文献求助10
33秒前
工力所完成签到,获得积分10
34秒前
xxxidgkris完成签到,获得积分10
36秒前
36秒前
36秒前
ding应助delta采纳,获得10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023