Some robust approaches based on copula for monitoring bivariate processes and component-wise assessment

二元分析 连接词(语言学) 非参数统计 边际分布 计算机科学 联合概率分布 单变量 稳健性(进化) 多元统计 数据挖掘 计量经济学 统计 数学 算法 机器学习 随机变量 生物化学 化学 基因
作者
Zhi Song,Amitava Mukherjee,Jiujun Zhang
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:289 (1): 177-196 被引量:19
标识
DOI:10.1016/j.ejor.2020.07.016
摘要

In this paper, we develop two adaptive approaches for detecting the signal source in a bivariate process when a shift occurs in the location vector or the scale matrix or both. The proposed method capitalises the notion of Sklar's principle of expressing any multivariate joint distribution in terms of univariate marginal-distribution functions and a copula, which represents the dependence structure between the variables. Motivated by this, we recommend monitoring the two marginal distributions and the copula function simultaneously using appropriate nonparametric (distribution-free) test statistics. At each stage of Phase-II monitoring, we adopt the permutation method for computing the individual p-values and derive the plotting statistics of our proposed schemes combining suitable transforms of the three p-values of the component testing. We establish the in-control robustness of the proposed surveillance plans and compare them with two competitors in terms of run length properties. Performance of the proposed schemes in detecting a correct out-of-control signal is as good or better than some existing charting schemes for bivariate process monitoring. The novelty of our proposed technique lies in the fact that it indigenously helps in identifying the component(s) responsible for the signal, which is not straightforward with the traditional schemes for surveillance of a bivariate process. Numerical results substantiate that the proposed procedure performs significantly better than its competitors in many cases. Also, we investigate the percentage of correct diagnosis of a signal via the proposed charting schemes. Nowadays, in monitoring and control of smooth service operations, the use of quality monitoring has increased than ever before, but the problem and data structures become more complicated in the Industry 4.0 era. We analyse two real case studies, one in the context of monitoring the response time and service quality in a call centre and the other related to the inspection of product quality, to illustrate the application of the proposed schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助KASTTTTTT采纳,获得10
刚刚
酷波er应助唠叨的可燕采纳,获得10
刚刚
小k发布了新的文献求助10
刚刚
虚幻天空发布了新的文献求助10
1秒前
珍狗发布了新的文献求助10
1秒前
阳光的电脑完成签到,获得积分10
2秒前
小马甲应助彭彭采纳,获得10
2秒前
西木发布了新的文献求助10
2秒前
小_n发布了新的文献求助30
2秒前
su发布了新的文献求助30
3秒前
3秒前
故意的鼠标完成签到,获得积分10
5秒前
某某某完成签到,获得积分0
5秒前
lixiang发布了新的文献求助10
7秒前
7秒前
年轻板凳完成签到,获得积分10
7秒前
AC赵先生发布了新的文献求助10
7秒前
8秒前
共享精神应助某某某采纳,获得10
9秒前
9秒前
FashionBoy应助cms采纳,获得30
9秒前
缓慢的海云完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
吡啶应助nj采纳,获得20
12秒前
西木完成签到,获得积分10
12秒前
天天快乐应助宓不评采纳,获得10
12秒前
12秒前
大个应助我要发十篇sci采纳,获得10
12秒前
wh发布了新的文献求助10
12秒前
whn完成签到,获得积分10
12秒前
13秒前
zhangJL驳回了Yziii应助
13秒前
冷静的莞发布了新的文献求助10
13秒前
15秒前
haning发布了新的文献求助10
15秒前
敏感的天空完成签到,获得积分10
15秒前
凉兮发布了新的文献求助10
15秒前
老橡树发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157139
求助须知:如何正确求助?哪些是违规求助? 2808445
关于积分的说明 7877659
捐赠科研通 2466978
什么是DOI,文献DOI怎么找? 1313089
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919