Predicting the Noise Covariance With a Multitask Learning Model for Kalman Filter-Based GNSS/INS Integrated Navigation

卡尔曼滤波器 全球导航卫星系统应用 协方差 计算机科学 惯性导航系统 协方差矩阵的估计 扩展卡尔曼滤波器 噪音(视频) 协方差交集 协方差矩阵 噪声测量 人工智能 控制理论(社会学) 全球定位系统 算法 降噪 数学 统计 电信 图像(数学) 方向(向量空间) 几何学 控制(管理)
作者
Fan Wu,Haiyong Luo,Hongwei Jia,Fang Zhao,Yimin Xiao,Xile Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-13 被引量:15
标识
DOI:10.1109/tim.2020.3024357
摘要

In the recent years, the availability of accurate vehicle position becomes more urgent. The global navigation satellite systems/inertial navigation system (GNSS/INS) is the most used integrated navigation scheme for land vehicles, which utilizes the Kalman filter (KF) to optimally fuse GNSS measurement and INS prediction for accurate and robust localization. However, the uncertainty of the process noise covariance and the measurement noise covariance has a significant impact on Kalman filtering performance. Traditional KF-based integrated navigation methods configure the process noise covariance and measurement noise covariance with predefined constants, which cannot adaptively characterize the various and dynamic environments, and obtain accurate and continuous positioning results under complex environments. To obtain accurate and robust localization results under various complex and dynamic environments, in this article, we propose a novel noise covariance estimation algorithm for the GNSS/INS-integrated navigation using multitask learning model, which can simultaneously estimate the process noise covariance and measurement noise covariance for the KF. The predicted multiplication factors are used to dynamically scale process noise covariance matrix and measurement noise covariance matrix respectively according to the inputs of raw inertial measurement. Extensive experiments are conducted on our collected practical road data set under three typical complex urban scenarios, such as, avenues, viaducts, and tunnels. Experimental results demonstrate that compared with the traditional KF-based integrated navigation algorithm with predefined fixed settings, our proposed method reduces 77.13% positioning error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高高发布了新的文献求助10
刚刚
cing完成签到,获得积分10
1秒前
Depeng完成签到,获得积分10
1秒前
Ava应助懒羊羊采纳,获得10
2秒前
3秒前
浪浪山第一酷完成签到,获得积分10
3秒前
3秒前
Endeavor完成签到,获得积分10
3秒前
3秒前
苦行僧发布了新的文献求助10
4秒前
Ava应助Reborn采纳,获得10
4秒前
shr完成签到,获得积分10
4秒前
选择性哑巴完成签到 ,获得积分10
4秒前
田様应助HHEHK采纳,获得10
5秒前
活力菠萝完成签到,获得积分10
5秒前
淡定鸿涛发布了新的文献求助10
5秒前
cc完成签到,获得积分10
6秒前
lessormoto发布了新的文献求助10
6秒前
wjx完成签到,获得积分10
6秒前
泡泡球完成签到,获得积分10
6秒前
洋了个洋洋完成签到,获得积分10
6秒前
米妮完成签到 ,获得积分10
6秒前
7秒前
7秒前
阳yang完成签到,获得积分10
7秒前
团结完成签到 ,获得积分10
7秒前
7秒前
弹剑作歌完成签到,获得积分10
7秒前
大袁完成签到,获得积分10
7秒前
时光完成签到,获得积分10
8秒前
wang发布了新的文献求助30
8秒前
温暖的冷风完成签到,获得积分10
9秒前
石翎发布了新的文献求助10
9秒前
9秒前
9秒前
苦行僧完成签到,获得积分10
10秒前
tyZhang完成签到,获得积分10
10秒前
在水一方应助白耳猫采纳,获得10
10秒前
渡增越发布了新的文献求助10
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167451
求助须知:如何正确求助?哪些是违规求助? 2818967
关于积分的说明 7923963
捐赠科研通 2478773
什么是DOI,文献DOI怎么找? 1320495
科研通“疑难数据库(出版商)”最低求助积分说明 632806
版权声明 602443