Combining Deep Learning With Optical Coherence Tomography Imaging to Determine Scalp Hair and Follicle Counts

头皮 毛囊 光学相干层析成像 卷积神经网络 深度学习 人工智能 计算机科学 模式识别(心理学) 医学 皮肤病科 放射科 内科学
作者
Gregor Urban,Nate Feil,Ella Csuka,Kiana Hashemi,Chloe Ekelem,Franchesca Choi,Natasha Atanaskova Mesinkovska,Pierre Baldi
出处
期刊:Lasers in Surgery and Medicine [Wiley]
卷期号:53 (1): 171-178 被引量:15
标识
DOI:10.1002/lsm.23324
摘要

One of the challenges in developing effective hair loss therapies is the lack of reliable methods to monitor treatment response or alopecia progression. In this study, we propose the use of optical coherence tomography (OCT) and automated deep learning to non-invasively evaluate hair and follicle counts that may be used to monitor the success of hair growth therapy more accurately and efficiently.We collected 70 OCT scans from 14 patients with alopecia and trained a convolutional neural network (CNN) to automatically count all follicles present in the scans. The model is based on a dual approach of both detecting hair follicles and estimating the local hair density in order to give accurate counts even for cases where two or more adjacent hairs are in close proximity to each other.We evaluate our system on 70 OCT manually labeled scans taken at different scalp locations from 14 patients, with 20 of those redundantly labeled by two human expert OCT operators. When comparing the individual human predictions and considering the exact locations of hair and follicle predictions, we find that the two human raters disagree with each other on approximately 22% of hairs and follicles. Overall, the deep learning (DL) system predicts the number of follicles with an error rate of 11.8% and the number of hairs with an error rate of 18.7% on average on the 70 scans. The OCT system can capture one scalp location in three seconds, and the DL model can make all predictions in less than a second after processing the scan, which takes half a minute using an unoptimized implementation.This approach is well-positioned to become the standard for non-invasive evaluation of hair growth treatment progress in patients, saving significant amounts of time and effort compared with manual evaluation. Lasers Surg. Med. © 2020 Wiley Periodicals, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiewuhua发布了新的文献求助10
刚刚
光头马润完成签到,获得积分10
刚刚
揍鱼发布了新的文献求助10
1秒前
leafye发布了新的文献求助20
1秒前
妞妞发布了新的文献求助10
1秒前
科研通AI2S应助dll采纳,获得10
2秒前
选择性哑巴完成签到 ,获得积分10
2秒前
桐桐应助玛卡巴卡采纳,获得10
3秒前
5秒前
cometx发布了新的文献求助10
5秒前
安和桥完成签到,获得积分10
5秒前
yeyuan1017完成签到,获得积分10
5秒前
6秒前
大个应助Joey采纳,获得30
7秒前
猫咪老师应助chiyudoubao采纳,获得30
7秒前
io完成签到,获得积分10
8秒前
HSD完成签到,获得积分10
8秒前
科研通AI2S应助biancaliu采纳,获得30
8秒前
9秒前
爱听歌烨华完成签到,获得积分10
9秒前
酷波er应助周而复始@采纳,获得10
9秒前
9秒前
sns八丘完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
黑闷蛋发布了新的文献求助10
11秒前
英姑应助369采纳,获得10
11秒前
HSD发布了新的文献求助10
13秒前
13秒前
14秒前
wrh发布了新的文献求助10
14秒前
加油发布了新的文献求助30
14秒前
777完成签到,获得积分20
15秒前
Hiker发布了新的文献求助10
15秒前
yeye完成签到,获得积分10
16秒前
小蘑菇应助奥特曼采纳,获得30
16秒前
lalala发布了新的文献求助10
16秒前
Gleaming完成签到,获得积分10
17秒前
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232940
求助须知:如何正确求助?哪些是违规求助? 2879558
关于积分的说明 8212027
捐赠科研通 2547095
什么是DOI,文献DOI怎么找? 1376547
科研通“疑难数据库(出版商)”最低求助积分说明 647658
邀请新用户注册赠送积分活动 623056