🔥 科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。详情 📚 中科院2025期刊分区📊 已更新

Network analytics and machine learning for predictive risk modelling of cardiovascular disease in patients with type 2 diabetes

疾病 机器学习 计算机科学 聚类分析 人工智能 2型糖尿病 大数据 预测分析 糖尿病 基线(sea) 医学 数据挖掘 内科学 海洋学 地质学 内分泌学
作者
Md Ekramul Hossain,Shahadat Uddin,Arif Khan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:164: 113918-113918 被引量:70
标识
DOI:10.1016/j.eswa.2020.113918
摘要

A high proportion of older adults with type 2 diabetes (T2D) often develop cardiovascular diseases (CVD). Diagnosis and regular monitoring of their multimorbidity is clinically and economically resource intensive. The interconnectedness of their health data and disease progression pathways can potentially reveal the multimorbidity risk if carefully analysed by data mining and network analysis techniques. This study proposed a risk prediction model utilising administrative data that uses network-based features and machine learning techniques to assess the risk of CVD in T2D patients. For this, two cohorts (i.e., patients with both T2D and CVD and patients with only T2D) were identified from an administrative dataset collected from the private healthcare funds based in Australia. Two baseline disease networks were generated from two study cohorts. A final disease network was then generated from two baseline disease networks through normalisation. This study extracted some social network-based features (i.e., the prevalence of comorbidities, transition patterns and clustering membership) from the final disease network and some demographic characteristics directly from the dataset. These risk factors were then used to develop six machine learning prediction models to assess the risk of CVD in patients with T2D. The classifiers accuracy ranged from 79% to 88% shows the potential of the network- and machine learning-based risk prediction model utilising administrative data. The proposed risk prediction model could be useful for medical practice as well as stakeholders to develop health management programs for patients at a high risk of developing chronic diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助威武忆山采纳,获得10
刚刚
刚刚
1秒前
科研使我快乐给科研使我快乐的求助进行了留言
1秒前
1秒前
1秒前
hsialy完成签到,获得积分10
2秒前
5秒前
syangZ完成签到,获得积分10
5秒前
汤泽琪发布了新的文献求助10
5秒前
dddyrrrrr完成签到 ,获得积分10
6秒前
lc完成签到,获得积分10
7秒前
没有色彩的多崎作完成签到,获得积分10
8秒前
lily发布了新的文献求助10
8秒前
hhhh完成签到 ,获得积分10
10秒前
mm发布了新的文献求助20
10秒前
威武忆山发布了新的文献求助10
11秒前
xiaohan完成签到 ,获得积分10
12秒前
ymh完成签到,获得积分10
12秒前
syangZ完成签到,获得积分10
13秒前
今后应助粥粥采纳,获得10
14秒前
所所应助汤泽琪采纳,获得10
14秒前
18秒前
19秒前
cxr关闭了cxr文献求助
20秒前
昏睡的蟠桃应助jiamei采纳,获得10
20秒前
Surge完成签到,获得积分10
22秒前
jiayou完成签到,获得积分10
22秒前
23秒前
24秒前
25秒前
hydrablue发布了新的文献求助10
28秒前
科研使我快乐完成签到,获得积分10
28秒前
30秒前
娟娟完成签到 ,获得积分10
31秒前
31秒前
Akim应助猫猫采纳,获得10
32秒前
cxr驳回了脑洞疼应助
32秒前
34秒前
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
EEG in clinical practice 2nd edition 1994 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3604700
求助须知:如何正确求助?哪些是违规求助? 3172828
关于积分的说明 9575929
捐赠科研通 2878902
什么是DOI,文献DOI怎么找? 1581220
邀请新用户注册赠送积分活动 743543
科研通“疑难数据库(出版商)”最低求助积分说明 725983