Real-time model updating for magnetorheological damper identification: an experimental study

阻尼器 磁流变液 控制理论(社会学) 磁流变阻尼器 非线性系统 卡尔曼滤波器 系统标识 工程类 计算机科学 控制工程 模拟 数据建模 人工智能 控制(管理) 物理 软件工程 量子力学
作者
Wei Song,Saeid Hayati,Shanglian Zhou
出处
期刊:Smart Structures and Systems [Techno-Press]
卷期号:20 (5): 619- 被引量:10
标识
DOI:10.12989/sss.2017.20.5.619
摘要

Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design for MR dampers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小大夫完成签到 ,获得积分10
刚刚
不必要再讨论适合与否完成签到,获得积分0
刚刚
shinhee完成签到,获得积分10
1秒前
清秋完成签到,获得积分10
1秒前
1秒前
梦鱼完成签到,获得积分10
1秒前
2秒前
2秒前
李某完成签到,获得积分10
3秒前
酷波er应助jzmupyj采纳,获得10
3秒前
沉静念烟完成签到,获得积分10
3秒前
火星上大开完成签到,获得积分10
4秒前
5秒前
KeZhihong完成签到,获得积分10
5秒前
日月※城完成签到,获得积分10
6秒前
南栀完成签到 ,获得积分10
6秒前
roger发布了新的文献求助10
6秒前
所爱皆在完成签到 ,获得积分10
7秒前
领导范儿应助Viyo采纳,获得10
7秒前
8秒前
Nyuki完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
隐形曼青应助张子健采纳,获得10
9秒前
ZuoqiHe完成签到,获得积分10
10秒前
B_lue完成签到 ,获得积分10
10秒前
vampirell完成签到,获得积分0
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
体贴板栗关注了科研通微信公众号
12秒前
13秒前
13秒前
消消消消气完成签到 ,获得积分10
13秒前
无限知能完成签到,获得积分20
13秒前
标致的冷梅完成签到,获得积分10
13秒前
淘小乐发布了新的文献求助10
15秒前
雨辰完成签到 ,获得积分10
16秒前
16秒前
forever完成签到 ,获得积分10
17秒前
123发布了新的文献求助10
17秒前
罗美女应助化工兔采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698860
求助须知:如何正确求助?哪些是违规求助? 5127041
关于积分的说明 15222713
捐赠科研通 4853854
什么是DOI,文献DOI怎么找? 2604340
邀请新用户注册赠送积分活动 1555814
关于科研通互助平台的介绍 1514139