Real-time model updating for magnetorheological damper identification: an experimental study

阻尼器 磁流变液 控制理论(社会学) 磁流变阻尼器 非线性系统 卡尔曼滤波器 系统标识 工程类 计算机科学 控制工程 模拟 数据建模 人工智能 控制(管理) 物理 软件工程 量子力学
作者
Wei Song,Saeid Hayati,Shanglian Zhou
出处
期刊:Smart Structures and Systems [Techno-Press]
卷期号:20 (5): 619- 被引量:10
标识
DOI:10.12989/sss.2017.20.5.619
摘要

Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design for MR dampers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高迎蓉发布了新的文献求助10
刚刚
徐霜完成签到 ,获得积分10
1秒前
DDXXC完成签到,获得积分10
1秒前
忧郁的续完成签到,获得积分20
1秒前
陈强发布了新的文献求助30
1秒前
wzg666完成签到,获得积分10
2秒前
2秒前
爆米花应助找不到采纳,获得10
2秒前
任性的梦菲应助圈圈采纳,获得30
2秒前
3秒前
Ava应助踏实的烙采纳,获得10
3秒前
4秒前
ChangSZ应助speedness采纳,获得10
4秒前
自由基不能聚合完成签到,获得积分10
4秒前
shone发布了新的文献求助10
5秒前
烟花应助yug采纳,获得10
5秒前
科研cc发布了新的文献求助10
5秒前
你仔细听发布了新的文献求助10
5秒前
路之遥兮发布了新的文献求助10
6秒前
一平发布了新的文献求助10
6秒前
jerry完成签到,获得积分20
6秒前
搞怪便当完成签到,获得积分10
6秒前
6秒前
6秒前
布丁仔完成签到,获得积分10
7秒前
7秒前
7秒前
Hu111完成签到,获得积分10
7秒前
7秒前
关琦完成签到,获得积分10
7秒前
8秒前
ZTT完成签到,获得积分20
8秒前
苗条的一一完成签到,获得积分10
8秒前
lxh2424发布了新的文献求助10
8秒前
8秒前
8秒前
dsjlove发布了新的文献求助10
9秒前
忧郁的续发布了新的文献求助10
9秒前
9秒前
科研r完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672