Real-time model updating for magnetorheological damper identification: an experimental study

阻尼器 磁流变液 控制理论(社会学) 磁流变阻尼器 非线性系统 卡尔曼滤波器 系统标识 工程类 计算机科学 控制工程 模拟 数据建模 人工智能 控制(管理) 物理 软件工程 量子力学
作者
Wei Song,Saeid Hayati,Shanglian Zhou
出处
期刊:Smart Structures and Systems [Techno-Press]
卷期号:20 (5): 619- 被引量:10
标识
DOI:10.12989/sss.2017.20.5.619
摘要

Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design for MR dampers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fmr完成签到,获得积分10
1秒前
cc完成签到,获得积分10
2秒前
充电宝应助暴躁的帽子采纳,获得10
2秒前
2秒前
lennon962464发布了新的文献求助10
2秒前
2秒前
mmm完成签到,获得积分20
3秒前
starofjlu给老张的求助进行了留言
3秒前
3秒前
zqz完成签到,获得积分20
4秒前
yolanda发布了新的文献求助10
4秒前
yxq完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
风度发布了新的文献求助10
6秒前
10秒前
Aurora的努力日记完成签到 ,获得积分10
10秒前
小长夜完成签到,获得积分10
10秒前
11秒前
sjh完成签到,获得积分10
11秒前
pudding发布了新的文献求助10
11秒前
yaooo发布了新的文献求助10
11秒前
misugi完成签到,获得积分10
12秒前
ruyuan发布了新的文献求助10
12秒前
你你你完成签到,获得积分10
12秒前
14秒前
hokuto应助遇事不决睡大觉采纳,获得10
15秒前
子小孙发布了新的文献求助10
16秒前
竹筏过海应助2531采纳,获得30
17秒前
逃之姚姚完成签到 ,获得积分10
17秒前
pudding完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
21秒前
22秒前
沉默寻凝完成签到,获得积分10
22秒前
yaooo完成签到,获得积分20
22秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148165
求助须知:如何正确求助?哪些是违规求助? 2799249
关于积分的说明 7834127
捐赠科研通 2456451
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655