Real-time model updating for magnetorheological damper identification: an experimental study

阻尼器 磁流变液 控制理论(社会学) 磁流变阻尼器 非线性系统 卡尔曼滤波器 系统标识 工程类 计算机科学 控制工程 模拟 数据建模 人工智能 控制(管理) 物理 软件工程 量子力学
作者
Wei Song,Saeid Hayati,Shanglian Zhou
出处
期刊:Smart Structures and Systems [Techno-Press]
卷期号:20 (5): 619- 被引量:10
标识
DOI:10.12989/sss.2017.20.5.619
摘要

Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design for MR dampers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
饱满太阳完成签到 ,获得积分10
1秒前
橙子发布了新的文献求助10
1秒前
1秒前
xy发布了新的文献求助10
3秒前
3秒前
伶俐的星月完成签到,获得积分10
4秒前
小二郎应助Horizon采纳,获得10
4秒前
4秒前
lzx完成签到,获得积分10
5秒前
5秒前
小蘑菇应助若米采纳,获得10
5秒前
Georges-09完成签到,获得积分10
6秒前
小马甲应助实验顺利采纳,获得10
6秒前
吴迪发布了新的文献求助10
6秒前
雁过留声完成签到,获得积分10
6秒前
7秒前
brouf完成签到 ,获得积分10
7秒前
个性的荆发布了新的文献求助10
8秒前
llf应助独特的追命采纳,获得20
8秒前
9秒前
满意语芙发布了新的文献求助10
10秒前
11秒前
11秒前
豆豆完成签到,获得积分10
11秒前
wang5945发布了新的文献求助10
12秒前
颖123发布了新的文献求助30
12秒前
apong发布了新的文献求助10
13秒前
13秒前
zzr完成签到 ,获得积分10
13秒前
14秒前
14秒前
15秒前
15秒前
15秒前
渡月桥完成签到,获得积分10
15秒前
田大明发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901