Netspot: A Simple Intrusion Detection System with Statistical Learning

计算机科学 入侵检测系统 简单(哲学) 异常检测 网络数据包 人工智能 机器学习 集合(抽象数据类型) 数据挖掘 计算机安全 哲学 认识论 程序设计语言
作者
Alban Siffer,Pierre-Alain Fouque,Alexandre Termier,Christine Largouët
标识
DOI:10.1109/trustcom50675.2020.00122
摘要

Machine learning is nowadays increasingly used in cyber-security. While intrusion detection was mainly based on human expertise in the 1990s, learning models to predict attacks are now built from data. However, a large part of the developed learning algorithms hitherto has missed real-world issues, making them unpractical. Indeed, many supervised algorithms described in the literature have been trained and tuned only on the KDD99 dataset. Besides, these algorithms are often static and are unable to automatically adapt for detecting attacks depending on the network traffic. Consequently, we are far from detecting zero-day or more general Advanced Persistent Threats (APT) since only pre-registered and well-characterized attacks can be catched. Some recent systems use unsupervised ML algorithms, but the resulting tools are overly complex: many ML components are stacked with various tuning parameters, usually making the results hard to interpret. And finally, a strong ML/DM expertise is required to set up these systems on real networks. We present netspot, a very simple network intrusion detection system (NIDS) powered by SPOT, a recent streaming statistical anomaly detector. This statistical test uses Extreme Value Theory, which is a powerful method for detecting anomalies. Unlike all the previous works, it is not an end-to-end solution aimed to detect all cyber-attacks with packet resolution. It is rather a module providing a behavioral information which can be integrated in a more general monitoring system. netspot is simple: it has few (simple) parameters, it adapts along time to the monitored network and it is as fast as current rule-based methods. But most importantly, it is able to detect realworld cyber-attacks, making it a credible practical anomaly-based NIDS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咕噜咕噜噜熊完成签到,获得积分10
1秒前
超级的小海豚完成签到,获得积分10
1秒前
1秒前
1秒前
深情安青应助LK采纳,获得10
1秒前
渔Avery完成签到,获得积分10
1秒前
forever完成签到,获得积分20
1秒前
xiaoyuanbao1988完成签到,获得积分10
1秒前
啊撒网大大e完成签到,获得积分10
2秒前
蓝胖子完成签到,获得积分10
3秒前
4秒前
坚定缘分完成签到,获得积分10
6秒前
细腻问柳完成签到 ,获得积分10
6秒前
金属喵酱完成签到,获得积分10
6秒前
forever发布了新的文献求助10
7秒前
Anny完成签到,获得积分20
7秒前
兔兔不睡觉完成签到 ,获得积分10
8秒前
9秒前
华仔应助tzjz_zrz采纳,获得30
10秒前
kento发布了新的文献求助30
10秒前
cc完成签到,获得积分10
10秒前
qiangxu发布了新的文献求助10
11秒前
11秒前
无花果应助懒猫采纳,获得10
11秒前
11秒前
清水完成签到 ,获得积分10
12秒前
LK发布了新的文献求助10
14秒前
思源应助活泼的觅云采纳,获得30
15秒前
15秒前
彼岸完成签到,获得积分10
17秒前
19秒前
顾矜应助阳光千亦采纳,获得10
21秒前
烟花应助forever采纳,获得10
21秒前
21秒前
xiaowang完成签到,获得积分10
21秒前
23秒前
岸岸岸岸完成签到,获得积分10
23秒前
23秒前
小马甲应助pwy采纳,获得10
23秒前
wwj完成签到,获得积分10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755395
求助须知:如何正确求助?哪些是违规求助? 3298462
关于积分的说明 10105902
捐赠科研通 3013141
什么是DOI,文献DOI怎么找? 1655012
邀请新用户注册赠送积分活动 789339
科研通“疑难数据库(出版商)”最低求助积分说明 753273