数学
点式的
高斯和
二次高斯和
极限(数学)
高斯
分布(数学)
二次方程
航程(航空)
平方根
纯数学
补语(音乐)
中心极限定理
组合数学
离散数学
数学分析
物理
统计
量子力学
几何学
材料科学
复合材料
生物化学
化学
互补
基因
表型
作者
Emek Demirci Akarsu,Jens Marklof
出处
期刊:Mathematika
[Wiley]
日期:2013-02-19
卷期号:59 (2): 381-398
被引量:13
标识
DOI:10.1112/s0025579312001179
摘要
It is well known that the classical Gauss sum, normalized by the square-root number of terms, takes only finitely many values. If one restricts the range of summation to a subinterval, a much richer structure emerges. We prove a limit law for the value distribution of such incomplete Gauss sums. The limit distribution is given by the distribution of a certain family of periodic functions. Our results complement Oskolkov's pointwise bounds for incomplete Gauss sums as well as the limit theorems for quadratic Weyl sums (theta sums) due to Jurkat and van Horne and the second author.
科研通智能强力驱动
Strongly Powered by AbleSci AI