控制理论(社会学)
计算机科学
非线性系统
人工神经网络
理论(学习稳定性)
强化学习
计算
控制(管理)
基质(化学分析)
Lyapunov稳定性
李雅普诺夫函数
趋同(经济学)
数学优化
数学
算法
人工智能
机器学习
物理
量子力学
复合材料
经济
材料科学
经济增长
作者
Jing Zhu,Peng Zhang,Yijing Hou
出处
期刊:Communications in computer and information science
日期:2020-01-01
卷期号:: 332-344
被引量:1
标识
DOI:10.1007/978-981-15-7670-6_28
摘要
In this paper, input-constrained optimal control policy for nonlinear time delay system is proposed in virtue of Lyapunov theories and adaptive dynamic programming method. The stability on delayed nonlinear systems is investigated based on linear matrix inequalities, upon which a sufficient stability condition is proposed. To implement the feedback control synthesis, a single neural network is constructed to work as critic and actor network simultaneously, which consequently reduces the computation complexity and storage occupation in programs. The weights of NN are online tuned and the weight estimate errors are proved to be convergent. Finally, simulation results are demonstrated to illustrate our results.
科研通智能强力驱动
Strongly Powered by AbleSci AI