New hybrid data mining model for credit scoring based on feature selection algorithm and ensemble classifiers

特征选择 计算机科学 人工智能 朴素贝叶斯分类器 集成学习 支持向量机 决策树 机器学习 多数决原则 数据挖掘 加权投票 投票 数据预处理 统计分类 分类器(UML) 预处理器 特征(语言学) 模式识别(心理学) 语言学 哲学 政治 政治学 法学
作者
Jasmina Nalić,Goran Martinović,Drago Žagar
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:45: 101130-101130 被引量:48
标识
DOI:10.1016/j.aei.2020.101130
摘要

The aim of this paper is to propose a new hybrid data mining model based on combination of various feature selection and ensemble learning classification algorithms, in order to support decision making process. The model is built through several stages. In the first stage, initial dataset is preprocessed and apart of applying different preprocessing techniques, we paid a great attention to the feature selection. Five different feature selection algorithms were applied and their results, based on ROC and accuracy measures of logistic regression algorithm, were combined based on different voting types. We also proposed a new voting method, called if_any, that outperformed all other voting methods, as well as a single feature selection algorithm's results. In the next stage, a four different classification algorithms, including generalized linear model, support vector machine, naive Bayes and decision tree, were performed based on dataset obtained in the feature selection process. These classifiers were combined in eight different ensemble models using soft voting method. Using the real dataset, the experimental results show that hybrid model that is based on features selected by if_any voting method and ensemble GLM + DT model performs the highest performance and outperforms all other ensemble and single classifier models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Ava应助犹豫的觅云采纳,获得10
2秒前
2秒前
2秒前
qwe完成签到,获得积分10
2秒前
乐乐应助张文静采纳,获得10
3秒前
3秒前
听雨潇潇完成签到,获得积分10
3秒前
3秒前
3秒前
lagom完成签到,获得积分10
4秒前
曾经青亦完成签到,获得积分10
4秒前
大反应釜完成签到,获得积分10
5秒前
5秒前
holland完成签到 ,获得积分10
5秒前
夏日天空完成签到,获得积分10
5秒前
qwe关闭了qwe文献求助
6秒前
PJ完成签到,获得积分10
6秒前
7秒前
浔xxx发布了新的文献求助10
7秒前
7秒前
kk发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
诚心的平松完成签到,获得积分10
9秒前
凹凸曼完成签到,获得积分20
9秒前
迟迟完成签到,获得积分10
9秒前
10秒前
Desperado完成签到,获得积分10
10秒前
科目三应助GXLong采纳,获得10
10秒前
10秒前
10秒前
鸣鸣发布了新的文献求助10
11秒前
yanxuhuan完成签到 ,获得积分10
11秒前
11秒前
英俊的铭应助花生采纳,获得10
11秒前
善良的灵羊完成签到 ,获得积分10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650