New hybrid data mining model for credit scoring based on feature selection algorithm and ensemble classifiers

特征选择 计算机科学 人工智能 朴素贝叶斯分类器 集成学习 支持向量机 决策树 机器学习 多数决原则 数据挖掘 加权投票 投票 数据预处理 统计分类 分类器(UML) 预处理器 特征(语言学) 模式识别(心理学) 语言学 哲学 政治 政治学 法学
作者
Jasmina Nalić,Goran Martinović,Drago Žagar
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:45: 101130-101130 被引量:48
标识
DOI:10.1016/j.aei.2020.101130
摘要

The aim of this paper is to propose a new hybrid data mining model based on combination of various feature selection and ensemble learning classification algorithms, in order to support decision making process. The model is built through several stages. In the first stage, initial dataset is preprocessed and apart of applying different preprocessing techniques, we paid a great attention to the feature selection. Five different feature selection algorithms were applied and their results, based on ROC and accuracy measures of logistic regression algorithm, were combined based on different voting types. We also proposed a new voting method, called if_any, that outperformed all other voting methods, as well as a single feature selection algorithm's results. In the next stage, a four different classification algorithms, including generalized linear model, support vector machine, naive Bayes and decision tree, were performed based on dataset obtained in the feature selection process. These classifiers were combined in eight different ensemble models using soft voting method. Using the real dataset, the experimental results show that hybrid model that is based on features selected by if_any voting method and ensemble GLM + DT model performs the highest performance and outperforms all other ensemble and single classifier models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qianqina完成签到,获得积分10
刚刚
好好好完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
乔乔完成签到,获得积分10
1秒前
1秒前
在水一方应助一群牛采纳,获得10
2秒前
2秒前
shiqiang mu应助雨寒采纳,获得10
2秒前
3秒前
未知发布了新的文献求助10
3秒前
3秒前
高媛完成签到,获得积分20
4秒前
yelaikuhun74发布了新的文献求助10
4秒前
蒋一发布了新的文献求助10
5秒前
qianqina发布了新的文献求助10
5秒前
5秒前
qise应助管夜白采纳,获得10
5秒前
乔呀完成签到,获得积分10
5秒前
xixi完成签到,获得积分20
6秒前
6秒前
Vivian完成签到,获得积分10
6秒前
6秒前
班玮越发布了新的文献求助10
6秒前
要增肥的樱完成签到,获得积分10
7秒前
科研通AI5应助雨碎寒江采纳,获得10
7秒前
liucheng完成签到,获得积分10
7秒前
8秒前
FashionBoy应助寒月如雪采纳,获得10
8秒前
qin发布了新的文献求助10
9秒前
9秒前
一年5篇发布了新的文献求助10
9秒前
明亮的小蘑菇完成签到 ,获得积分10
9秒前
chenk完成签到,获得积分10
9秒前
如意猕猴桃完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12365发布了新的文献求助10
11秒前
科研通AI5应助Leoniko采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403