Enhancement of Triboelectric Charge Density by Chemical Functionalization

摩擦电效应 材料科学 纳米发生器 软件可移植性 静电感应 化学过程 纳米技术 表面改性 化学工程 接触带电 机械工程 计算机科学 复合材料 化学 物理化学 工程类 压电 电极 程序设计语言
作者
Yanhua Liu,Jilong Mo,Qiu Fu,Yanxu Lu,Ni Zhang,Shuangfei Wang,Shuangxi Nie
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:30 (50) 被引量:247
标识
DOI:10.1002/adfm.202004714
摘要

Abstract A triboelectric nanogenerator (TENG) can convert energy in the surrounding environment to electricity. Therefore, in recent years, research related to TENGs has significantly increased owing to its simple and low‐cost manufacturing process, high portability, and high efficiency. The principle of the TENG lies in the coupling effect of contact electrification and electrostatic induction. Its output performance is directly proportional to the square of the surface charge density, which is related to friction materials. To increase the output power of a TENG and continuously provide electricity for other electronic equipment, many scholars have conducted detailed studies on the triboelectric properties of materials. Particularly, there has been research interest in the chemical functionalization of TENGs due to their unique advantages, such as high triboelectric charge density, durability, stability, and self‐cleaning properties. This Progress Report highlights the research progress in chemical modification methods for improving the charge density of TENGs, and classifies their modification methods according to their mechanisms. The effects of chemical reaction, surface chemical treatment, and chemical substance doping on the output performance of TENGs are systematically elaborated. Furthermore, the applications of chemically modified TENG in self‐powered sensors and emerging fields, including wearable electronic devices, human‐machine interfaces, and implantable electronic devices, are introduced. Lastly, the challenges faced in the future developments of chemical modification methods are discussed, thereby guiding researchers to the use of chemical modification methods for the improvement of charge density for further exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
光亮芷天完成签到,获得积分10
1秒前
1秒前
2秒前
粗犷的问夏完成签到,获得积分10
3秒前
知行合一完成签到 ,获得积分10
4秒前
4秒前
5秒前
李爱国应助晨曦采纳,获得10
6秒前
0128lun发布了新的文献求助10
6秒前
phd发布了新的文献求助10
7秒前
君无名完成签到 ,获得积分10
7秒前
经年发布了新的文献求助10
7秒前
QXR完成签到,获得积分10
8秒前
豆dou完成签到,获得积分10
8秒前
Dddd发布了新的文献求助10
8秒前
HCl完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
Hollen完成签到 ,获得积分10
12秒前
慕青应助学术蠕虫采纳,获得10
13秒前
13秒前
叶子发布了新的文献求助10
14秒前
orangel完成签到,获得积分10
15秒前
半壶月色半边天完成签到 ,获得积分10
16秒前
tmpstlml发布了新的文献求助10
16秒前
17秒前
17秒前
不安饼干完成签到 ,获得积分10
19秒前
活泼的飞鸟完成签到,获得积分10
19秒前
20秒前
xuyun发布了新的文献求助10
20秒前
20秒前
zzcres完成签到,获得积分10
22秒前
eeeee完成签到 ,获得积分10
22秒前
乐观德地完成签到,获得积分10
23秒前
大个应助yf_zhu采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808