材料科学
阴极
电解质
电极
表面工程
钝化
化学工程
表面改性
涂层
原子层沉积
纳米技术
电化学
薄膜
物理化学
化学
工程类
图层(电子)
作者
Wenhua Zuo,Jimin Qiu,Xiangsi Liu,Bizhu Zheng,Yang Zhao,Jialin Li,Huajin He,Ke Zhou,Zhumei Xiao,Qi Li,Gregorio F. Ortiz,Yong Yang
标识
DOI:10.1016/j.ensm.2019.11.024
摘要
One of the key challenges of sodium ion batteries is to develop sustainable, low-cost and high capacity cathodes, and this is the reason that layered sodium manganese oxides have attracted so much attention. However, the undesired phase transitions and poor electrolyte-electrode interfacial stability facilitate their capacity decay and limit their practical applications. Herein, we design a novel Al2O3@Na0.67Zn0.1Mn0.9O2 electrode to mitigate these problems, by taking the advantages of both structural stabilization and surface passivation via Zn2+ substitution and Al2O3 atomic layered deposition (ALD) coating, respectively. Long-range and local structural analyses during charging/discharging processes indicate that P2–P2’ phase transformation can be suppressed by substituting proper amount of Mn3+ Jahn-Teller centers with Zn2+, whereas excessive Zn2+ leads to P2-OP4 structure transition at low sodium contents and facilitates the electrode degradations. Furthermore, the homogeneous and robust cathode electrolyte interphase (CEI) layers formed on the Al2O3-coated electrodes effectively hinder the organic electrolytes from further decomposition. Therefore, our synergetic strategy of Zn2+ substitution and ALD surface engineering remarkably boosts the cycling performance of P2–Na0.67MnO2 and provides some new insights into the designing of highly stable cathode electrodes for sustainable sodium ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI