Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners

人工智能 计算机科学 分割 计算机视觉 模式识别(心理学) 深度学习 实体造型 齿面 背景(考古学) 牙科 地质学 医学 古生物学
作者
Chunfeng Lian,Li Wang,Tai‐Hsien Wu,Fan Wang,Pew‐Thian Yap,Ching‐Chang Ko,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (7): 2440-2450 被引量:94
标识
DOI:10.1109/tmi.2020.2971730
摘要

Precisely labeling teeth on digitalized 3D dental surface models is the precondition for tooth position rearrangements in orthodontic treatment planning. However, it is a challenging task primarily due to the abnormal and varying appearance of patients' teeth. The emerging utilization of intraoral scanners (IOSs) in clinics further increases the difficulty in automated tooth labeling, as the raw surfaces acquired by IOS are typically low-quality at gingival and deep intraoral regions. In recent years, some pioneering end-to-end methods (e.g., PointNet) have been proposed in the communities of computer vision and graphics to consume directly raw surface for 3D shape segmentation. Although these methods are potentially applicable to our task, most of them fail to capture fine-grained local geometric context that is critical to the identification of small teeth with varying shapes and appearances. In this paper, we propose an end-to-end deep-learning method, called MeshSegNet, for automated tooth labeling on raw dental surfaces. Using multiple raw surface attributes as inputs, MeshSegNet integrates a series of graph-constrained learning modules along its forward path to hierarchically extract multi-scale local contextual features. Then, a dense fusion strategy is applied to combine local-to-global geometric features for the learning of higher-level features for mesh cell annotation. The predictions produced by our MeshSegNet are further post-processed by a graph-cut refinement step for final segmentation. We evaluated MeshSegNet using a real-patient dataset consisting of raw maxillary surfaces acquired by 3D IOS. Experimental results, performed 5-fold cross-validation, demonstrate that MeshSegNet significantly outperforms state-of-the-art deep learning methods for 3D shape segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taku完成签到 ,获得积分10
1秒前
科研通AI6应助liuhs采纳,获得10
2秒前
浮游应助爱听歌颦采纳,获得10
2秒前
哈哈完成签到,获得积分20
3秒前
4秒前
烂漫的弘文完成签到,获得积分10
5秒前
一只特立独行的朱完成签到,获得积分10
8秒前
大胆妙竹完成签到 ,获得积分10
9秒前
lll完成签到,获得积分10
9秒前
bibibi完成签到,获得积分10
9秒前
大饼哥完成签到,获得积分10
10秒前
小绵羊完成签到,获得积分20
11秒前
周晓完成签到,获得积分20
11秒前
哆啦A梦完成签到,获得积分10
16秒前
简单的晓博完成签到,获得积分10
16秒前
细心奇异果完成签到,获得积分10
16秒前
你笑的样子真好看完成签到,获得积分10
17秒前
WLL给WLL的求助进行了留言
18秒前
乐风完成签到,获得积分10
19秒前
追风者完成签到,获得积分10
19秒前
追梦人2016完成签到 ,获得积分10
22秒前
丰富的谷菱完成签到,获得积分10
22秒前
义气芷荷完成签到,获得积分10
22秒前
权_888完成签到 ,获得积分10
23秒前
SppikeFPS完成签到,获得积分10
24秒前
wenxian完成签到,获得积分10
24秒前
插线板完成签到 ,获得积分10
25秒前
呆头鹅完成签到 ,获得积分10
30秒前
熠直在发光给熠直在发光的求助进行了留言
32秒前
11完成签到 ,获得积分10
32秒前
32秒前
迷恋你的微笑完成签到,获得积分10
33秒前
ding应助physicalproblem采纳,获得50
34秒前
爆米花应助like采纳,获得10
36秒前
创不可贴给创不可贴的求助进行了留言
36秒前
真实的豆芽完成签到,获得积分10
37秒前
ningmeng完成签到,获得积分10
38秒前
勤劳的盼山给勤劳的盼山的求助进行了留言
38秒前
张硕论完成签到,获得积分10
38秒前
木香完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465567
求助须知:如何正确求助?哪些是违规求助? 4569829
关于积分的说明 14321219
捐赠科研通 4496303
什么是DOI,文献DOI怎么找? 2463217
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427369