Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners

人工智能 计算机科学 分割 计算机视觉 模式识别(心理学) 深度学习 实体造型 齿面 背景(考古学) 牙科 地质学 医学 古生物学
作者
Chunfeng Lian,Li Wang,Tai‐Hsien Wu,Fan Wang,Pew‐Thian Yap,Ching‐Chang Ko,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (7): 2440-2450 被引量:94
标识
DOI:10.1109/tmi.2020.2971730
摘要

Precisely labeling teeth on digitalized 3D dental surface models is the precondition for tooth position rearrangements in orthodontic treatment planning. However, it is a challenging task primarily due to the abnormal and varying appearance of patients' teeth. The emerging utilization of intraoral scanners (IOSs) in clinics further increases the difficulty in automated tooth labeling, as the raw surfaces acquired by IOS are typically low-quality at gingival and deep intraoral regions. In recent years, some pioneering end-to-end methods (e.g., PointNet) have been proposed in the communities of computer vision and graphics to consume directly raw surface for 3D shape segmentation. Although these methods are potentially applicable to our task, most of them fail to capture fine-grained local geometric context that is critical to the identification of small teeth with varying shapes and appearances. In this paper, we propose an end-to-end deep-learning method, called MeshSegNet, for automated tooth labeling on raw dental surfaces. Using multiple raw surface attributes as inputs, MeshSegNet integrates a series of graph-constrained learning modules along its forward path to hierarchically extract multi-scale local contextual features. Then, a dense fusion strategy is applied to combine local-to-global geometric features for the learning of higher-level features for mesh cell annotation. The predictions produced by our MeshSegNet are further post-processed by a graph-cut refinement step for final segmentation. We evaluated MeshSegNet using a real-patient dataset consisting of raw maxillary surfaces acquired by 3D IOS. Experimental results, performed 5-fold cross-validation, demonstrate that MeshSegNet significantly outperforms state-of-the-art deep learning methods for 3D shape segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹏虫虫发布了新的文献求助10
刚刚
盏盏发布了新的文献求助10
1秒前
言言发布了新的文献求助10
1秒前
1秒前
1秒前
孙悦文完成签到,获得积分10
3秒前
充电宝应助妮儿采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
6秒前
6秒前
言言完成签到,获得积分10
6秒前
wuchang发布了新的文献求助10
6秒前
7秒前
科目三应助wyi采纳,获得10
7秒前
8秒前
慕青应助Chemvenus采纳,获得10
8秒前
在水一方应助无辜的半烟采纳,获得10
8秒前
9秒前
907完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
科研通AI6应助危机的外套采纳,获得10
13秒前
可爱的函函应助橘子采纳,获得10
13秒前
Moments完成签到,获得积分10
13秒前
13秒前
清爽难胜完成签到,获得积分10
13秒前
Oasis发布了新的文献求助20
14秒前
李金桥发布了新的文献求助10
14秒前
调皮的鼠标完成签到 ,获得积分10
15秒前
15秒前
枯叶灬风发布了新的文献求助10
15秒前
907发布了新的文献求助10
16秒前
16秒前
ZhiyunXu2012完成签到 ,获得积分10
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442631
求助须知:如何正确求助?哪些是违规求助? 4552821
关于积分的说明 14239035
捐赠科研通 4474041
什么是DOI,文献DOI怎么找? 2451912
邀请新用户注册赠送积分活动 1442798
关于科研通互助平台的介绍 1418593