Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners

人工智能 计算机科学 分割 计算机视觉 模式识别(心理学) 深度学习 实体造型 齿面 背景(考古学) 牙科 地质学 医学 古生物学
作者
Chunfeng Lian,Li Wang,Tai‐Hsien Wu,Fan Wang,Pew‐Thian Yap,Ching‐Chang Ko,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (7): 2440-2450 被引量:94
标识
DOI:10.1109/tmi.2020.2971730
摘要

Precisely labeling teeth on digitalized 3D dental surface models is the precondition for tooth position rearrangements in orthodontic treatment planning. However, it is a challenging task primarily due to the abnormal and varying appearance of patients' teeth. The emerging utilization of intraoral scanners (IOSs) in clinics further increases the difficulty in automated tooth labeling, as the raw surfaces acquired by IOS are typically low-quality at gingival and deep intraoral regions. In recent years, some pioneering end-to-end methods (e.g., PointNet) have been proposed in the communities of computer vision and graphics to consume directly raw surface for 3D shape segmentation. Although these methods are potentially applicable to our task, most of them fail to capture fine-grained local geometric context that is critical to the identification of small teeth with varying shapes and appearances. In this paper, we propose an end-to-end deep-learning method, called MeshSegNet, for automated tooth labeling on raw dental surfaces. Using multiple raw surface attributes as inputs, MeshSegNet integrates a series of graph-constrained learning modules along its forward path to hierarchically extract multi-scale local contextual features. Then, a dense fusion strategy is applied to combine local-to-global geometric features for the learning of higher-level features for mesh cell annotation. The predictions produced by our MeshSegNet are further post-processed by a graph-cut refinement step for final segmentation. We evaluated MeshSegNet using a real-patient dataset consisting of raw maxillary surfaces acquired by 3D IOS. Experimental results, performed 5-fold cross-validation, demonstrate that MeshSegNet significantly outperforms state-of-the-art deep learning methods for 3D shape segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
001完成签到,获得积分10
1秒前
岳仔完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
彭于晏发布了新的文献求助10
3秒前
3秒前
呼了个呼发布了新的文献求助10
3秒前
羽柒er完成签到,获得积分10
3秒前
111发布了新的文献求助10
4秒前
4秒前
5秒前
tt发布了新的文献求助10
5秒前
123456完成签到,获得积分10
6秒前
6秒前
wanci应助我爱学习采纳,获得10
6秒前
快乐尔容发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
alile发布了新的文献求助10
9秒前
乐乐应助逗逗采纳,获得10
9秒前
无限的映之给无限的映之的求助进行了留言
9秒前
10秒前
10秒前
小马甲应助轩辕冰夏采纳,获得10
10秒前
10秒前
陈同学发布了新的文献求助40
11秒前
星辰大海应助安安安采纳,获得10
11秒前
12秒前
FartKing发布了新的文献求助50
12秒前
12秒前
nms170520发布了新的文献求助10
12秒前
13秒前
酷酷酷发布了新的文献求助10
13秒前
tt完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321239
求助须知:如何正确求助?哪些是违规求助? 4463064
关于积分的说明 13888665
捐赠科研通 4354148
什么是DOI,文献DOI怎么找? 2391585
邀请新用户注册赠送积分活动 1385183
关于科研通互助平台的介绍 1354924