Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners

人工智能 计算机科学 分割 计算机视觉 模式识别(心理学) 深度学习 实体造型 齿面 背景(考古学) 牙科 地质学 医学 古生物学
作者
Chunfeng Lian,Li Wang,Tai‐Hsien Wu,Fan Wang,Pew‐Thian Yap,Ching‐Chang Ko,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (7): 2440-2450 被引量:94
标识
DOI:10.1109/tmi.2020.2971730
摘要

Precisely labeling teeth on digitalized 3D dental surface models is the precondition for tooth position rearrangements in orthodontic treatment planning. However, it is a challenging task primarily due to the abnormal and varying appearance of patients' teeth. The emerging utilization of intraoral scanners (IOSs) in clinics further increases the difficulty in automated tooth labeling, as the raw surfaces acquired by IOS are typically low-quality at gingival and deep intraoral regions. In recent years, some pioneering end-to-end methods (e.g., PointNet) have been proposed in the communities of computer vision and graphics to consume directly raw surface for 3D shape segmentation. Although these methods are potentially applicable to our task, most of them fail to capture fine-grained local geometric context that is critical to the identification of small teeth with varying shapes and appearances. In this paper, we propose an end-to-end deep-learning method, called MeshSegNet, for automated tooth labeling on raw dental surfaces. Using multiple raw surface attributes as inputs, MeshSegNet integrates a series of graph-constrained learning modules along its forward path to hierarchically extract multi-scale local contextual features. Then, a dense fusion strategy is applied to combine local-to-global geometric features for the learning of higher-level features for mesh cell annotation. The predictions produced by our MeshSegNet are further post-processed by a graph-cut refinement step for final segmentation. We evaluated MeshSegNet using a real-patient dataset consisting of raw maxillary surfaces acquired by 3D IOS. Experimental results, performed 5-fold cross-validation, demonstrate that MeshSegNet significantly outperforms state-of-the-art deep learning methods for 3D shape segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗老九完成签到,获得积分10
刚刚
无聊的成风完成签到 ,获得积分10
1秒前
大锤应助反写炒蛋采纳,获得10
1秒前
1秒前
2秒前
kds完成签到,获得积分10
2秒前
YWH完成签到,获得积分10
3秒前
张岱帅z应助合适依秋采纳,获得10
3秒前
3秒前
4秒前
飞鸟完成签到,获得积分10
4秒前
啊啊完成签到,获得积分10
4秒前
CipherSage应助斯文梦寒采纳,获得10
5秒前
5秒前
5秒前
天真的羊青完成签到 ,获得积分10
5秒前
tuanheqi应助轩辕中蓝采纳,获得50
6秒前
wy.he应助轩辕中蓝采纳,获得10
6秒前
wy.he应助轩辕中蓝采纳,获得10
6秒前
科研通AI2S应助轩辕中蓝采纳,获得10
6秒前
pluto应助轩辕中蓝采纳,获得10
6秒前
科研通AI2S应助轩辕中蓝采纳,获得10
6秒前
上官若男应助轩辕中蓝采纳,获得30
6秒前
Orange应助轩辕中蓝采纳,获得10
7秒前
脑洞疼应助轩辕中蓝采纳,获得10
7秒前
我是老大应助轩辕中蓝采纳,获得10
7秒前
王sir完成签到 ,获得积分10
7秒前
研友_ED5GK应助吴宣京采纳,获得20
7秒前
王耀发布了新的文献求助10
7秒前
见龙在田完成签到,获得积分10
7秒前
7秒前
叶子发布了新的文献求助10
8秒前
learn应助man采纳,获得20
8秒前
10秒前
10秒前
11秒前
斯文败类应助三季稻采纳,获得10
11秒前
11秒前
CWNU_HAN应助流川封采纳,获得30
11秒前
慕青应助mmmmmMM采纳,获得10
11秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 500
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3104880
求助须知:如何正确求助?哪些是违规求助? 2756128
关于积分的说明 7637295
捐赠科研通 2409779
什么是DOI,文献DOI怎么找? 1278480
科研通“疑难数据库(出版商)”最低求助积分说明 617439
版权声明 599242