亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners

人工智能 计算机科学 分割 计算机视觉 模式识别(心理学) 深度学习 实体造型 齿面 背景(考古学) 牙科 地质学 医学 古生物学
作者
Chunfeng Lian,Li Wang,Tai‐Hsien Wu,Fan Wang,Pew‐Thian Yap,Ching‐Chang Ko,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (7): 2440-2450 被引量:94
标识
DOI:10.1109/tmi.2020.2971730
摘要

Precisely labeling teeth on digitalized 3D dental surface models is the precondition for tooth position rearrangements in orthodontic treatment planning. However, it is a challenging task primarily due to the abnormal and varying appearance of patients' teeth. The emerging utilization of intraoral scanners (IOSs) in clinics further increases the difficulty in automated tooth labeling, as the raw surfaces acquired by IOS are typically low-quality at gingival and deep intraoral regions. In recent years, some pioneering end-to-end methods (e.g., PointNet) have been proposed in the communities of computer vision and graphics to consume directly raw surface for 3D shape segmentation. Although these methods are potentially applicable to our task, most of them fail to capture fine-grained local geometric context that is critical to the identification of small teeth with varying shapes and appearances. In this paper, we propose an end-to-end deep-learning method, called MeshSegNet, for automated tooth labeling on raw dental surfaces. Using multiple raw surface attributes as inputs, MeshSegNet integrates a series of graph-constrained learning modules along its forward path to hierarchically extract multi-scale local contextual features. Then, a dense fusion strategy is applied to combine local-to-global geometric features for the learning of higher-level features for mesh cell annotation. The predictions produced by our MeshSegNet are further post-processed by a graph-cut refinement step for final segmentation. We evaluated MeshSegNet using a real-patient dataset consisting of raw maxillary surfaces acquired by 3D IOS. Experimental results, performed 5-fold cross-validation, demonstrate that MeshSegNet significantly outperforms state-of-the-art deep learning methods for 3D shape segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
why发布了新的文献求助10
51秒前
Geist完成签到,获得积分10
52秒前
量子星尘发布了新的文献求助10
1分钟前
冷傲迎梅完成签到 ,获得积分10
1分钟前
hzc关闭了hzc文献求助
1分钟前
why完成签到,获得积分10
1分钟前
DChen完成签到,获得积分10
1分钟前
hzc发布了新的文献求助10
2分钟前
踏实的无敌完成签到,获得积分10
2分钟前
甜瓜123完成签到,获得积分10
2分钟前
南极的企鹅365完成签到 ,获得积分10
2分钟前
小宋同学不能怂完成签到 ,获得积分10
2分钟前
hzc发布了新的文献求助10
2分钟前
小燕子完成签到 ,获得积分10
3分钟前
上官若男应助hzc采纳,获得10
3分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
4分钟前
科研通AI6应助尊敬的芷卉采纳,获得20
4分钟前
4分钟前
情怀应助尊敬的芷卉采纳,获得10
4分钟前
4分钟前
英姑应助尊敬的芷卉采纳,获得20
4分钟前
4分钟前
情怀应助尊敬的芷卉采纳,获得10
4分钟前
华仔应助尊敬的芷卉采纳,获得20
4分钟前
上官若男应助尊敬的芷卉采纳,获得20
4分钟前
浮游应助VDC采纳,获得10
4分钟前
5分钟前
高级牛马完成签到 ,获得积分10
5分钟前
于yu完成签到 ,获得积分10
5分钟前
LIN完成签到,获得积分10
6分钟前
6分钟前
6分钟前
lxfthu发布了新的文献求助10
7分钟前
汪汪淬冰冰完成签到,获得积分10
7分钟前
范白容完成签到 ,获得积分0
7分钟前
SimonShaw完成签到,获得积分10
7分钟前
7分钟前
8分钟前
lxfthu发布了新的文献求助10
8分钟前
热情依白发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470310
求助须知:如何正确求助?哪些是违规求助? 4573151
关于积分的说明 14338158
捐赠科研通 4500182
什么是DOI,文献DOI怎么找? 2465615
邀请新用户注册赠送积分活动 1453965
关于科研通互助平台的介绍 1428602