Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners

人工智能 计算机科学 分割 计算机视觉 模式识别(心理学) 深度学习 实体造型 齿面 背景(考古学) 牙科 地质学 医学 古生物学
作者
Chunfeng Lian,Li Wang,Tai‐Hsien Wu,Fan Wang,Pew‐Thian Yap,Ching‐Chang Ko,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (7): 2440-2450 被引量:94
标识
DOI:10.1109/tmi.2020.2971730
摘要

Precisely labeling teeth on digitalized 3D dental surface models is the precondition for tooth position rearrangements in orthodontic treatment planning. However, it is a challenging task primarily due to the abnormal and varying appearance of patients' teeth. The emerging utilization of intraoral scanners (IOSs) in clinics further increases the difficulty in automated tooth labeling, as the raw surfaces acquired by IOS are typically low-quality at gingival and deep intraoral regions. In recent years, some pioneering end-to-end methods (e.g., PointNet) have been proposed in the communities of computer vision and graphics to consume directly raw surface for 3D shape segmentation. Although these methods are potentially applicable to our task, most of them fail to capture fine-grained local geometric context that is critical to the identification of small teeth with varying shapes and appearances. In this paper, we propose an end-to-end deep-learning method, called MeshSegNet, for automated tooth labeling on raw dental surfaces. Using multiple raw surface attributes as inputs, MeshSegNet integrates a series of graph-constrained learning modules along its forward path to hierarchically extract multi-scale local contextual features. Then, a dense fusion strategy is applied to combine local-to-global geometric features for the learning of higher-level features for mesh cell annotation. The predictions produced by our MeshSegNet are further post-processed by a graph-cut refinement step for final segmentation. We evaluated MeshSegNet using a real-patient dataset consisting of raw maxillary surfaces acquired by 3D IOS. Experimental results, performed 5-fold cross-validation, demonstrate that MeshSegNet significantly outperforms state-of-the-art deep learning methods for 3D shape segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
bkagyin应助南兮采纳,获得10
1秒前
xymy发布了新的文献求助10
2秒前
2秒前
Ken77关注了科研通微信公众号
5秒前
5秒前
5秒前
姜丝罐罐n发布了新的文献求助10
6秒前
7秒前
乌拉拉啦啦啦完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
闫栋发布了新的文献求助10
8秒前
拾弎完成签到 ,获得积分10
10秒前
王小茗完成签到,获得积分10
10秒前
钻石DrWang完成签到 ,获得积分10
11秒前
南兮发布了新的文献求助10
12秒前
12秒前
贾不努力完成签到,获得积分10
12秒前
13秒前
15秒前
17秒前
littletail完成签到,获得积分10
17秒前
我是老大应助Emma采纳,获得10
17秒前
保护外卖发布了新的文献求助10
19秒前
于冬雪发布了新的文献求助10
20秒前
ttt完成签到,获得积分10
20秒前
南兮完成签到,获得积分10
20秒前
希望天下0贩的0应助瓶盖采纳,获得10
23秒前
23秒前
lyj完成签到 ,获得积分10
23秒前
Albert完成签到,获得积分10
23秒前
lyk2815完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
Lucas应助Snow采纳,获得10
26秒前
咕噜噜发布了新的文献求助10
27秒前
NexusExplorer应助酷酷的问丝采纳,获得10
27秒前
zj完成签到 ,获得积分10
28秒前
华仔应助李y梅子采纳,获得10
28秒前
CipherSage应助橙子采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425362
求助须知:如何正确求助?哪些是违规求助? 4539459
关于积分的说明 14168091
捐赠科研通 4456964
什么是DOI,文献DOI怎么找? 2444356
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740