Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners

人工智能 计算机科学 分割 计算机视觉 模式识别(心理学) 深度学习 实体造型 齿面 背景(考古学) 牙科 地质学 医学 古生物学
作者
Chunfeng Lian,Li Wang,Tai‐Hsien Wu,Fan Wang,Pew‐Thian Yap,Ching‐Chang Ko,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (7): 2440-2450 被引量:94
标识
DOI:10.1109/tmi.2020.2971730
摘要

Precisely labeling teeth on digitalized 3D dental surface models is the precondition for tooth position rearrangements in orthodontic treatment planning. However, it is a challenging task primarily due to the abnormal and varying appearance of patients' teeth. The emerging utilization of intraoral scanners (IOSs) in clinics further increases the difficulty in automated tooth labeling, as the raw surfaces acquired by IOS are typically low-quality at gingival and deep intraoral regions. In recent years, some pioneering end-to-end methods (e.g., PointNet) have been proposed in the communities of computer vision and graphics to consume directly raw surface for 3D shape segmentation. Although these methods are potentially applicable to our task, most of them fail to capture fine-grained local geometric context that is critical to the identification of small teeth with varying shapes and appearances. In this paper, we propose an end-to-end deep-learning method, called MeshSegNet, for automated tooth labeling on raw dental surfaces. Using multiple raw surface attributes as inputs, MeshSegNet integrates a series of graph-constrained learning modules along its forward path to hierarchically extract multi-scale local contextual features. Then, a dense fusion strategy is applied to combine local-to-global geometric features for the learning of higher-level features for mesh cell annotation. The predictions produced by our MeshSegNet are further post-processed by a graph-cut refinement step for final segmentation. We evaluated MeshSegNet using a real-patient dataset consisting of raw maxillary surfaces acquired by 3D IOS. Experimental results, performed 5-fold cross-validation, demonstrate that MeshSegNet significantly outperforms state-of-the-art deep learning methods for 3D shape segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Glitter完成签到 ,获得积分10
刚刚
少女徐必成完成签到 ,获得积分10
刚刚
俍璟完成签到 ,获得积分10
1秒前
马騳骉完成签到,获得积分10
2秒前
YY完成签到,获得积分10
4秒前
5秒前
轻歌水越完成签到 ,获得积分10
7秒前
Orange应助DIY101采纳,获得10
7秒前
细腻的山水完成签到 ,获得积分10
7秒前
JOJO完成签到,获得积分10
8秒前
222发布了新的文献求助10
8秒前
搞怪大白菜真实的钥匙完成签到,获得积分10
10秒前
10秒前
无私小小完成签到,获得积分10
10秒前
lpx43完成签到,获得积分10
11秒前
研友Bn完成签到 ,获得积分10
11秒前
苏钰完成签到,获得积分10
13秒前
zhangzhen发布了新的文献求助10
14秒前
清脆初晴完成签到,获得积分10
15秒前
16秒前
小土豆完成签到,获得积分10
17秒前
DIY101发布了新的文献求助10
21秒前
自信南霜完成签到 ,获得积分10
22秒前
笑点低凡桃完成签到,获得积分10
23秒前
巴山郎完成签到,获得积分10
23秒前
zhangzhen完成签到,获得积分10
23秒前
25秒前
wwl完成签到,获得积分10
25秒前
WJY完成签到,获得积分10
27秒前
科研肥料完成签到,获得积分10
27秒前
xiao完成签到 ,获得积分10
28秒前
勤劳的老九应助取法乎上采纳,获得10
28秒前
28秒前
DIY101完成签到,获得积分10
28秒前
老猪佩奇完成签到,获得积分10
29秒前
含糊的无声完成签到 ,获得积分10
29秒前
搞怪大白菜真实的钥匙关注了科研通微信公众号
30秒前
无辜凝天完成签到,获得积分10
31秒前
cdd完成签到,获得积分10
32秒前
火星上含芙完成签到 ,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513400
关于积分的说明 11167585
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875131
科研通“疑难数据库(出版商)”最低求助积分说明 804664