Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma

列线图 淋巴血管侵犯 医学 无线电技术 标准摄取值 内科学 放射科 正电子发射断层摄影术 核医学 癌症 转移
作者
Pei Nie,Guangjie Yang,Ning Wang,Lei Yan,Wenjie Miao,Yanli Duan,Yanli Wang,Aidi Gong,Yujun Zhao,Jie Wu,Chuantao Zhang,Maolong Wang,Jingjing Cui,Ming Yu,Dacheng Li,Yanqin Sun,Yangyang Wang,Zhenguang Wang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:48 (1): 217-230 被引量:61
标识
DOI:10.1007/s00259-020-04747-5
摘要

Lymphovascular invasion (LVI) impairs surgical outcomes in lung adenocarcinoma (LAC) patients. Preoperative prediction of LVI is challenging by using traditional clinical and imaging parameters. The purpose of this study was to investigate the value of the radiomics nomogram integrating clinical factors, CT features, and maximum standardized uptake value (SUVmax) to predict LVI and outcome in LAC and to evaluate the additional value of the SUVmax to the PET/CT-based radiomics nomogram. A total of 272 LAC patients (87 LVI-present LACs and 185 LVI-absent LACs) with PET/CT scans were retrospectively enrolled, and 160 patients with SUVmax ≥ 2.5 of them were used for PET radiomics analysis. Clinical data and CT features were analyzed to select independent LVI predictors. The performance of the independent LVI predictors and SUVmax was evaluated. Two-dimensional (2D) and three-dimensional (3D) CT radiomics signatures (RSs) and PET-RS were constructed with the least absolute shrinkage and selection operator algorithm and radiomics scores (Rad-scores) were calculated. The radiomics nomograms, incorporating Rad-score and independent clinical and CT factors, with SUVmax (RNWS) or without SUVmax (RNWOS) were built. The performance of the models was assessed with respect to calibration, discrimination, and clinical usefulness. All the clinical, PET/CT, pathologic, therapeutic, and radiomics parameters were assessed to identify independent predictors of progression-free survival (PFS). CT morphology was the independent LVI predictor. SUVmax provided better discrimination capability compared with CT morphology in the training set (P   0.05), and 2D CT-RS showed a relatively higher AUC than 3D CT-RS. The CT-RS, the CT-RNWOS, and the CT-RNWS showed good discrimination in the training set (AUC [area under the curve], 0.799, 0.796, and 0.851, respectively) and the test set (AUC, 0.818, 0.822, and 0.838, respectively). There was significant difference in AUC between the CT-RNWS and CT-RNWOS (P = 0.044) in the training set. Decision curve analysis (DCA) demonstrated the CT-RNWS outperformed the CT-RS and the CT-RNWOS in terms of clinical usefulness. Furthermore, DCA showed the PETCT-RNWS provided the highest net benefit compared with the PET-RNWS and CT-RNWS. PFS was significantly different between the pathologic and RNWS-predicted LVI-present and LVI-absent patients (P < 0.001). Carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), pathologic LVI, histologic subtype, and SUVmax were independent predictors of PFS in the 244 CT-RNWS-predicted cohort; and CA125, NSE, pathologic LVI, and SUVmax were the independent predictors of PFS in the 141 PETCT-RNWS-predicted cohort. The radiomics nomogram, incorporating Rad-score, clinical and PET/CT parameters, shows favorable predictive efficacy for LVI status in LAC. Pathologic LVI and SUVmax are associated with LAC prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘显波完成签到,获得积分10
2秒前
kaka091完成签到,获得积分10
2秒前
3秒前
路宝发布了新的文献求助10
3秒前
禾+完成签到,获得积分10
3秒前
4秒前
申申完成签到,获得积分10
4秒前
5秒前
qian完成签到,获得积分20
5秒前
锦鲤完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
禾+发布了新的文献求助10
7秒前
小白完成签到,获得积分20
8秒前
刘JX完成签到,获得积分10
8秒前
geold发布了新的文献求助10
10秒前
传奇3应助Mm采纳,获得10
10秒前
bkagyin应助帕尼尼采纳,获得10
11秒前
研友_VZG7GZ应助圣斗士采纳,获得10
11秒前
D1fficulty完成签到,获得积分0
11秒前
欢欢完成签到,获得积分10
11秒前
11秒前
DDDD发布了新的文献求助10
11秒前
申申发布了新的文献求助10
12秒前
zzz完成签到,获得积分10
12秒前
Cassie发布了新的文献求助30
13秒前
13秒前
QY发布了新的文献求助20
13秒前
务实老虎完成签到,获得积分10
14秒前
Orange应助刘JX采纳,获得10
16秒前
16秒前
小白菜完成签到,获得积分10
16秒前
时玖发布了新的文献求助10
18秒前
surui完成签到 ,获得积分10
18秒前
20秒前
jjzzSherri完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
领导范儿应助QY采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342