清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma

列线图 淋巴血管侵犯 医学 无线电技术 标准摄取值 内科学 放射科 正电子发射断层摄影术 核医学 癌症 转移
作者
Pei Nie,Guangjie Yang,Ning Wang,Lei Yan,Wenjie Miao,Yanli Duan,Yanli Wang,Aidi Gong,Yujun Zhao,Jie Wu,Chuantao Zhang,Maolong Wang,Jingjing Cui,Ming Yu,Dacheng Li,Yanqin Sun,Yangyang Wang,Zhenguang Wang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:48 (1): 217-230 被引量:61
标识
DOI:10.1007/s00259-020-04747-5
摘要

Lymphovascular invasion (LVI) impairs surgical outcomes in lung adenocarcinoma (LAC) patients. Preoperative prediction of LVI is challenging by using traditional clinical and imaging parameters. The purpose of this study was to investigate the value of the radiomics nomogram integrating clinical factors, CT features, and maximum standardized uptake value (SUVmax) to predict LVI and outcome in LAC and to evaluate the additional value of the SUVmax to the PET/CT-based radiomics nomogram. A total of 272 LAC patients (87 LVI-present LACs and 185 LVI-absent LACs) with PET/CT scans were retrospectively enrolled, and 160 patients with SUVmax ≥ 2.5 of them were used for PET radiomics analysis. Clinical data and CT features were analyzed to select independent LVI predictors. The performance of the independent LVI predictors and SUVmax was evaluated. Two-dimensional (2D) and three-dimensional (3D) CT radiomics signatures (RSs) and PET-RS were constructed with the least absolute shrinkage and selection operator algorithm and radiomics scores (Rad-scores) were calculated. The radiomics nomograms, incorporating Rad-score and independent clinical and CT factors, with SUVmax (RNWS) or without SUVmax (RNWOS) were built. The performance of the models was assessed with respect to calibration, discrimination, and clinical usefulness. All the clinical, PET/CT, pathologic, therapeutic, and radiomics parameters were assessed to identify independent predictors of progression-free survival (PFS). CT morphology was the independent LVI predictor. SUVmax provided better discrimination capability compared with CT morphology in the training set (P   0.05), and 2D CT-RS showed a relatively higher AUC than 3D CT-RS. The CT-RS, the CT-RNWOS, and the CT-RNWS showed good discrimination in the training set (AUC [area under the curve], 0.799, 0.796, and 0.851, respectively) and the test set (AUC, 0.818, 0.822, and 0.838, respectively). There was significant difference in AUC between the CT-RNWS and CT-RNWOS (P = 0.044) in the training set. Decision curve analysis (DCA) demonstrated the CT-RNWS outperformed the CT-RS and the CT-RNWOS in terms of clinical usefulness. Furthermore, DCA showed the PETCT-RNWS provided the highest net benefit compared with the PET-RNWS and CT-RNWS. PFS was significantly different between the pathologic and RNWS-predicted LVI-present and LVI-absent patients (P < 0.001). Carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), pathologic LVI, histologic subtype, and SUVmax were independent predictors of PFS in the 244 CT-RNWS-predicted cohort; and CA125, NSE, pathologic LVI, and SUVmax were the independent predictors of PFS in the 141 PETCT-RNWS-predicted cohort. The radiomics nomogram, incorporating Rad-score, clinical and PET/CT parameters, shows favorable predictive efficacy for LVI status in LAC. Pathologic LVI and SUVmax are associated with LAC prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
量子星尘发布了新的文献求助10
22秒前
美好灵寒完成签到 ,获得积分10
28秒前
科研通AI2S应助Jessica采纳,获得10
39秒前
1分钟前
殷勤的涵梅完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Future完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
George发布了新的文献求助30
3分钟前
melody完成签到 ,获得积分10
3分钟前
荣荣发布了新的文献求助10
3分钟前
Sunny完成签到,获得积分10
3分钟前
荣荣完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
黄油小熊完成签到 ,获得积分10
4分钟前
CodeCraft应助Developing_human采纳,获得10
4分钟前
模拟八个字完成签到,获得积分10
4分钟前
xingsixs完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
tracyzhang完成签到 ,获得积分10
5分钟前
xue完成签到 ,获得积分10
5分钟前
影2857完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
小蘑菇应助科研通管家采纳,获得10
6分钟前
辣小扬完成签到 ,获得积分10
6分钟前
无花果应助yupaopao采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664590
求助须知:如何正确求助?哪些是违规求助? 4865694
关于积分的说明 15108114
捐赠科研通 4823215
什么是DOI,文献DOI怎么找? 2582091
邀请新用户注册赠送积分活动 1536184
关于科研通互助平台的介绍 1494567