Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma

列线图 淋巴血管侵犯 医学 无线电技术 标准摄取值 内科学 放射科 正电子发射断层摄影术 核医学 癌症 转移
作者
Pei Nie,Guangjie Yang,Ning Wang,Lei Yan,Wenjie Miao,Yanli Duan,Yanli Wang,Aidi Gong,Yujun Zhao,Jie Wu,Chuantao Zhang,Maolong Wang,Jingjing Cui,Ming Yu,Dacheng Li,Yanqin Sun,Yangyang Wang,Zhenguang Wang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:48 (1): 217-230 被引量:61
标识
DOI:10.1007/s00259-020-04747-5
摘要

Lymphovascular invasion (LVI) impairs surgical outcomes in lung adenocarcinoma (LAC) patients. Preoperative prediction of LVI is challenging by using traditional clinical and imaging parameters. The purpose of this study was to investigate the value of the radiomics nomogram integrating clinical factors, CT features, and maximum standardized uptake value (SUVmax) to predict LVI and outcome in LAC and to evaluate the additional value of the SUVmax to the PET/CT-based radiomics nomogram. A total of 272 LAC patients (87 LVI-present LACs and 185 LVI-absent LACs) with PET/CT scans were retrospectively enrolled, and 160 patients with SUVmax ≥ 2.5 of them were used for PET radiomics analysis. Clinical data and CT features were analyzed to select independent LVI predictors. The performance of the independent LVI predictors and SUVmax was evaluated. Two-dimensional (2D) and three-dimensional (3D) CT radiomics signatures (RSs) and PET-RS were constructed with the least absolute shrinkage and selection operator algorithm and radiomics scores (Rad-scores) were calculated. The radiomics nomograms, incorporating Rad-score and independent clinical and CT factors, with SUVmax (RNWS) or without SUVmax (RNWOS) were built. The performance of the models was assessed with respect to calibration, discrimination, and clinical usefulness. All the clinical, PET/CT, pathologic, therapeutic, and radiomics parameters were assessed to identify independent predictors of progression-free survival (PFS). CT morphology was the independent LVI predictor. SUVmax provided better discrimination capability compared with CT morphology in the training set (P   0.05), and 2D CT-RS showed a relatively higher AUC than 3D CT-RS. The CT-RS, the CT-RNWOS, and the CT-RNWS showed good discrimination in the training set (AUC [area under the curve], 0.799, 0.796, and 0.851, respectively) and the test set (AUC, 0.818, 0.822, and 0.838, respectively). There was significant difference in AUC between the CT-RNWS and CT-RNWOS (P = 0.044) in the training set. Decision curve analysis (DCA) demonstrated the CT-RNWS outperformed the CT-RS and the CT-RNWOS in terms of clinical usefulness. Furthermore, DCA showed the PETCT-RNWS provided the highest net benefit compared with the PET-RNWS and CT-RNWS. PFS was significantly different between the pathologic and RNWS-predicted LVI-present and LVI-absent patients (P < 0.001). Carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), pathologic LVI, histologic subtype, and SUVmax were independent predictors of PFS in the 244 CT-RNWS-predicted cohort; and CA125, NSE, pathologic LVI, and SUVmax were the independent predictors of PFS in the 141 PETCT-RNWS-predicted cohort. The radiomics nomogram, incorporating Rad-score, clinical and PET/CT parameters, shows favorable predictive efficacy for LVI status in LAC. Pathologic LVI and SUVmax are associated with LAC prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助山海采纳,获得10
刚刚
Ava应助小橘子采纳,获得10
刚刚
byloo完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
炸安完成签到 ,获得积分10
3秒前
Sean发布了新的文献求助10
3秒前
伊洛发布了新的文献求助10
3秒前
3秒前
4秒前
瓜瓜完成签到,获得积分10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
zhx发布了新的文献求助10
7秒前
ss完成签到,获得积分10
7秒前
CipherSage应助舒服的蝴蝶采纳,获得10
7秒前
瓜瓜发布了新的文献求助10
7秒前
科目三应助王一一一一采纳,获得10
8秒前
觉允若意发布了新的文献求助10
8秒前
清飏应助徐爱琳采纳,获得10
9秒前
荆佳怡发布了新的文献求助10
10秒前
彭于晏应助wlnhyF采纳,获得10
10秒前
刘倩倩完成签到 ,获得积分10
10秒前
科研通AI6应助洁净的千凡采纳,获得10
10秒前
常健完成签到,获得积分10
11秒前
天天快乐应助张潇潇采纳,获得10
11秒前
11秒前
胡吵吵完成签到,获得积分20
11秒前
维奈克拉举报张路方求助涉嫌违规
12秒前
holy关注了科研通微信公众号
13秒前
13秒前
11发布了新的文献求助20
16秒前
顺心绮兰发布了新的文献求助10
16秒前
迷路怜珊发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614975
求助须知:如何正确求助?哪些是违规求助? 4699849
关于积分的说明 14905634
捐赠科研通 4740875
什么是DOI,文献DOI怎么找? 2547874
邀请新用户注册赠送积分活动 1511649
关于科研通互助平台的介绍 1473715