Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma

列线图 淋巴血管侵犯 医学 无线电技术 标准摄取值 内科学 放射科 正电子发射断层摄影术 核医学 癌症 转移
作者
Pei Nie,Guangjie Yang,Ning Wang,Lei Yan,Wenjie Miao,Yanli Duan,Yanli Wang,Aidi Gong,Yujun Zhao,Jie Wu,Chuantao Zhang,Maolong Wang,Jingjing Cui,Ming Yu,Dacheng Li,Yanqin Sun,Yangyang Wang,Zhenguang Wang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:48 (1): 217-230 被引量:61
标识
DOI:10.1007/s00259-020-04747-5
摘要

Lymphovascular invasion (LVI) impairs surgical outcomes in lung adenocarcinoma (LAC) patients. Preoperative prediction of LVI is challenging by using traditional clinical and imaging parameters. The purpose of this study was to investigate the value of the radiomics nomogram integrating clinical factors, CT features, and maximum standardized uptake value (SUVmax) to predict LVI and outcome in LAC and to evaluate the additional value of the SUVmax to the PET/CT-based radiomics nomogram. A total of 272 LAC patients (87 LVI-present LACs and 185 LVI-absent LACs) with PET/CT scans were retrospectively enrolled, and 160 patients with SUVmax ≥ 2.5 of them were used for PET radiomics analysis. Clinical data and CT features were analyzed to select independent LVI predictors. The performance of the independent LVI predictors and SUVmax was evaluated. Two-dimensional (2D) and three-dimensional (3D) CT radiomics signatures (RSs) and PET-RS were constructed with the least absolute shrinkage and selection operator algorithm and radiomics scores (Rad-scores) were calculated. The radiomics nomograms, incorporating Rad-score and independent clinical and CT factors, with SUVmax (RNWS) or without SUVmax (RNWOS) were built. The performance of the models was assessed with respect to calibration, discrimination, and clinical usefulness. All the clinical, PET/CT, pathologic, therapeutic, and radiomics parameters were assessed to identify independent predictors of progression-free survival (PFS). CT morphology was the independent LVI predictor. SUVmax provided better discrimination capability compared with CT morphology in the training set (P   0.05), and 2D CT-RS showed a relatively higher AUC than 3D CT-RS. The CT-RS, the CT-RNWOS, and the CT-RNWS showed good discrimination in the training set (AUC [area under the curve], 0.799, 0.796, and 0.851, respectively) and the test set (AUC, 0.818, 0.822, and 0.838, respectively). There was significant difference in AUC between the CT-RNWS and CT-RNWOS (P = 0.044) in the training set. Decision curve analysis (DCA) demonstrated the CT-RNWS outperformed the CT-RS and the CT-RNWOS in terms of clinical usefulness. Furthermore, DCA showed the PETCT-RNWS provided the highest net benefit compared with the PET-RNWS and CT-RNWS. PFS was significantly different between the pathologic and RNWS-predicted LVI-present and LVI-absent patients (P < 0.001). Carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), pathologic LVI, histologic subtype, and SUVmax were independent predictors of PFS in the 244 CT-RNWS-predicted cohort; and CA125, NSE, pathologic LVI, and SUVmax were the independent predictors of PFS in the 141 PETCT-RNWS-predicted cohort. The radiomics nomogram, incorporating Rad-score, clinical and PET/CT parameters, shows favorable predictive efficacy for LVI status in LAC. Pathologic LVI and SUVmax are associated with LAC prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助鲤鱼一鸣采纳,获得10
2秒前
大咪完成签到,获得积分10
2秒前
科目三应助张言采纳,获得10
2秒前
2秒前
pppsci完成签到,获得积分10
2秒前
xsh发布了新的文献求助10
2秒前
Wyx关注了科研通微信公众号
2秒前
盼不热夏完成签到,获得积分10
3秒前
3秒前
Hilda007应助能干的台灯采纳,获得10
3秒前
科研通AI5应助Tuniverse_采纳,获得10
3秒前
Fanss发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
细腻戒指发布了新的文献求助30
5秒前
袋袋完成签到,获得积分10
6秒前
mashibeo完成签到,获得积分10
6秒前
CSR完成签到,获得积分20
6秒前
6秒前
星辰大海应助西瓜和傻瓜采纳,获得10
7秒前
7秒前
7秒前
qq16发布了新的文献求助10
7秒前
hw发布了新的文献求助10
9秒前
鲤鱼凛发布了新的文献求助20
9秒前
无心发布了新的文献求助10
9秒前
科研通AI5应助专注的兰采纳,获得10
10秒前
彼方250521完成签到,获得积分10
10秒前
辛勤的毛毛完成签到 ,获得积分10
10秒前
11秒前
贪玩问凝发布了新的文献求助10
11秒前
11秒前
11秒前
Ava应助Fanss采纳,获得10
11秒前
小笼包完成签到,获得积分10
12秒前
12秒前
玲哥儿发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193647
求助须知:如何正确求助?哪些是违规求助? 4376073
关于积分的说明 13628267
捐赠科研通 4230972
什么是DOI,文献DOI怎么找? 2320601
邀请新用户注册赠送积分活动 1319016
关于科研通互助平台的介绍 1269321