Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma

列线图 淋巴血管侵犯 医学 无线电技术 标准摄取值 内科学 放射科 正电子发射断层摄影术 核医学 癌症 转移
作者
Pei Nie,Guangjie Yang,Ning Wang,Lei Yan,Wenjie Miao,Yanli Duan,Yanli Wang,Aidi Gong,Yujun Zhao,Jie Wu,Chuantao Zhang,Maolong Wang,Jingjing Cui,Ming Yu,Dacheng Li,Yanqin Sun,Yangyang Wang,Zhenguang Wang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:48 (1): 217-230 被引量:61
标识
DOI:10.1007/s00259-020-04747-5
摘要

Lymphovascular invasion (LVI) impairs surgical outcomes in lung adenocarcinoma (LAC) patients. Preoperative prediction of LVI is challenging by using traditional clinical and imaging parameters. The purpose of this study was to investigate the value of the radiomics nomogram integrating clinical factors, CT features, and maximum standardized uptake value (SUVmax) to predict LVI and outcome in LAC and to evaluate the additional value of the SUVmax to the PET/CT-based radiomics nomogram. A total of 272 LAC patients (87 LVI-present LACs and 185 LVI-absent LACs) with PET/CT scans were retrospectively enrolled, and 160 patients with SUVmax ≥ 2.5 of them were used for PET radiomics analysis. Clinical data and CT features were analyzed to select independent LVI predictors. The performance of the independent LVI predictors and SUVmax was evaluated. Two-dimensional (2D) and three-dimensional (3D) CT radiomics signatures (RSs) and PET-RS were constructed with the least absolute shrinkage and selection operator algorithm and radiomics scores (Rad-scores) were calculated. The radiomics nomograms, incorporating Rad-score and independent clinical and CT factors, with SUVmax (RNWS) or without SUVmax (RNWOS) were built. The performance of the models was assessed with respect to calibration, discrimination, and clinical usefulness. All the clinical, PET/CT, pathologic, therapeutic, and radiomics parameters were assessed to identify independent predictors of progression-free survival (PFS). CT morphology was the independent LVI predictor. SUVmax provided better discrimination capability compared with CT morphology in the training set (P   0.05), and 2D CT-RS showed a relatively higher AUC than 3D CT-RS. The CT-RS, the CT-RNWOS, and the CT-RNWS showed good discrimination in the training set (AUC [area under the curve], 0.799, 0.796, and 0.851, respectively) and the test set (AUC, 0.818, 0.822, and 0.838, respectively). There was significant difference in AUC between the CT-RNWS and CT-RNWOS (P = 0.044) in the training set. Decision curve analysis (DCA) demonstrated the CT-RNWS outperformed the CT-RS and the CT-RNWOS in terms of clinical usefulness. Furthermore, DCA showed the PETCT-RNWS provided the highest net benefit compared with the PET-RNWS and CT-RNWS. PFS was significantly different between the pathologic and RNWS-predicted LVI-present and LVI-absent patients (P < 0.001). Carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), pathologic LVI, histologic subtype, and SUVmax were independent predictors of PFS in the 244 CT-RNWS-predicted cohort; and CA125, NSE, pathologic LVI, and SUVmax were the independent predictors of PFS in the 141 PETCT-RNWS-predicted cohort. The radiomics nomogram, incorporating Rad-score, clinical and PET/CT parameters, shows favorable predictive efficacy for LVI status in LAC. Pathologic LVI and SUVmax are associated with LAC prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
Neko完成签到,获得积分10
1秒前
HY完成签到 ,获得积分10
5秒前
南浔完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
11秒前
13秒前
隐形荟完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
19秒前
桐桐应助安青兰采纳,获得10
20秒前
上进完成签到 ,获得积分10
21秒前
顺心寄容完成签到,获得积分10
22秒前
龙弟弟完成签到 ,获得积分10
28秒前
YiWei完成签到 ,获得积分10
32秒前
33秒前
安青兰发布了新的文献求助10
36秒前
量子星尘发布了新的文献求助10
37秒前
freebird完成签到,获得积分10
42秒前
Ava应助Yidie采纳,获得10
45秒前
自然亦凝完成签到,获得积分10
46秒前
47秒前
海阔天空完成签到 ,获得积分10
48秒前
49秒前
俊逸的香萱完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
53秒前
周全完成签到 ,获得积分10
53秒前
xingmeng完成签到,获得积分10
56秒前
59秒前
Yidie发布了新的文献求助10
1分钟前
1分钟前
Heart_of_Stone完成签到 ,获得积分10
1分钟前
麦田麦兜完成签到,获得积分10
1分钟前
lyw发布了新的文献求助10
1分钟前
1分钟前
安然完成签到 ,获得积分10
1分钟前
航行天下完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
点点完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764851
求助须知:如何正确求助?哪些是违规求助? 5555516
关于积分的说明 15406631
捐赠科研通 4899773
什么是DOI,文献DOI怎么找? 2635961
邀请新用户注册赠送积分活动 1584163
关于科研通互助平台的介绍 1539446