EEG-based intention recognition with deep recurrent-convolution neural network: Performance and channel selection by Grad-CAM

脑-机接口 计算机科学 解码方法 脑电图 人工智能 频道(广播) 卷积(计算机科学) 卷积神经网络 模式识别(心理学) 选择(遗传算法) 接口(物质) 运动表象 语音识别 人工神经网络 算法 心理学 计算机网络 气泡 精神科 最大气泡压力法 并行计算
作者
Yurong Li,Hao Yang,Jixiang Li,Dongyi Chen,Min Du
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:415: 225-233 被引量:77
标识
DOI:10.1016/j.neucom.2020.07.072
摘要

Electroencephalography (EEG) based Brain-Computer Interface (BCI) enables subjects to communicate with the outside world or control equipment using brain signals without passing through muscles and nerves. Many researchers in recent years have studied the non-invasive BCI systems. However, the efficiency of the intention decoding algorithm is affected by the random non-stationary and low signal-to-noise ratio characteristics of the EEG signal. Furthermore, channel selection is another important issue in BCI systems intention recognition. During intention recognition in BCI systems, the unnecessary information produced by redundant electrodes affects the decoding rate and deplete system resources. In this paper, we introduce a recurrent-convolution neural network model for intention recognition by learning decomposed spatio-temporal representations. We apply the novel Gradient-Class Activation Mapping (Grad-CAM) visualization technology to the channel selection. Grad-CAM uses the gradient of any classification, flowing into the last convolutional layer to produce a coarse localization map. Since the pixels of the localization map correspond to the spatial regions where the electrodes are placed, we select the channels that are more important for decision-making. We conduct an experiment using the public motor imagery EEG dataset EEGMMIDB. The experimental results demonstrate that our method achieves an accuracy of 97.36% at the full channel, outperforming many state-of-the-art models and baseline models. Although the decoding rate of our model is the same as the best model compared, our model has fewer parameters with faster training time. After the channel selection, our model maintains the intention decoding performance of 92.31% while reducing the number of channels by nearly half and saving system resources. Our method achieves an optimal trade-off between performance and the number of electrode channels for EEG intention decoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Colo完成签到,获得积分10
1秒前
2秒前
4秒前
6秒前
顾矜应助Duxize采纳,获得10
7秒前
7秒前
Hqq12完成签到,获得积分20
9秒前
酷波er应助优秀的枕头采纳,获得10
9秒前
cuicui发布了新的文献求助10
10秒前
XY发布了新的文献求助10
10秒前
Akim应助GALAXY采纳,获得10
11秒前
11秒前
12秒前
星辰大海应助超级小熊猫采纳,获得10
12秒前
小马过河发布了新的文献求助10
12秒前
12秒前
传奇3应助Hqq12采纳,获得10
13秒前
XLY发布了新的文献求助10
16秒前
啊啊发布了新的文献求助10
17秒前
李y梅子发布了新的文献求助10
18秒前
成熟稳重痴情完成签到,获得积分10
20秒前
20秒前
20秒前
小马过河完成签到,获得积分10
21秒前
Sylvia完成签到,获得积分10
21秒前
21秒前
路漫漫123完成签到,获得积分10
22秒前
cuicui完成签到,获得积分10
23秒前
搜集达人应助小马过河采纳,获得10
24秒前
Bigbiglei完成签到,获得积分10
24秒前
GALAXY发布了新的文献求助10
25秒前
26秒前
陶瓷小罐完成签到 ,获得积分10
26秒前
27秒前
27秒前
归尘发布了新的文献求助10
28秒前
CC发布了新的文献求助10
28秒前
杨欢完成签到,获得积分10
28秒前
ada发布了新的文献求助30
29秒前
梅子酒发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710