EEG-based intention recognition with deep recurrent-convolution neural network: Performance and channel selection by Grad-CAM

脑-机接口 计算机科学 解码方法 脑电图 人工智能 频道(广播) 卷积(计算机科学) 卷积神经网络 模式识别(心理学) 选择(遗传算法) 接口(物质) 运动表象 语音识别 人工神经网络 算法 心理学 计算机网络 气泡 精神科 最大气泡压力法 并行计算
作者
Yurong Li,Hao Yang,Jixiang Li,Dongyi Chen,Min Du
出处
期刊:Neurocomputing [Elsevier]
卷期号:415: 225-233 被引量:86
标识
DOI:10.1016/j.neucom.2020.07.072
摘要

Electroencephalography (EEG) based Brain-Computer Interface (BCI) enables subjects to communicate with the outside world or control equipment using brain signals without passing through muscles and nerves. Many researchers in recent years have studied the non-invasive BCI systems. However, the efficiency of the intention decoding algorithm is affected by the random non-stationary and low signal-to-noise ratio characteristics of the EEG signal. Furthermore, channel selection is another important issue in BCI systems intention recognition. During intention recognition in BCI systems, the unnecessary information produced by redundant electrodes affects the decoding rate and deplete system resources. In this paper, we introduce a recurrent-convolution neural network model for intention recognition by learning decomposed spatio-temporal representations. We apply the novel Gradient-Class Activation Mapping (Grad-CAM) visualization technology to the channel selection. Grad-CAM uses the gradient of any classification, flowing into the last convolutional layer to produce a coarse localization map. Since the pixels of the localization map correspond to the spatial regions where the electrodes are placed, we select the channels that are more important for decision-making. We conduct an experiment using the public motor imagery EEG dataset EEGMMIDB. The experimental results demonstrate that our method achieves an accuracy of 97.36% at the full channel, outperforming many state-of-the-art models and baseline models. Although the decoding rate of our model is the same as the best model compared, our model has fewer parameters with faster training time. After the channel selection, our model maintains the intention decoding performance of 92.31% while reducing the number of channels by nearly half and saving system resources. Our method achieves an optimal trade-off between performance and the number of electrode channels for EEG intention decoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
黑暗之神发布了新的文献求助30
2秒前
2秒前
阿嘉发布了新的文献求助10
2秒前
刘三萍完成签到,获得积分10
2秒前
研友_nxeAlZ发布了新的文献求助30
2秒前
兰兰猪头完成签到,获得积分20
3秒前
NexusExplorer应助山雀采纳,获得10
3秒前
聪明的绮波完成签到,获得积分10
3秒前
3秒前
syalonyui完成签到,获得积分10
4秒前
结实旭尧完成签到 ,获得积分10
4秒前
chichi完成签到,获得积分10
5秒前
5秒前
标致以云完成签到,获得积分10
5秒前
lhq发布了新的文献求助10
6秒前
星辰大海应助选波采纳,获得10
6秒前
6秒前
南湖秋水发布了新的文献求助10
6秒前
7秒前
biu完成签到,获得积分20
7秒前
星辰大海应助彩色亿先采纳,获得10
7秒前
白大侠发布了新的文献求助10
7秒前
舒适千儿完成签到,获得积分10
8秒前
8秒前
徐一一发布了新的文献求助10
8秒前
white驳回了shijie应助
8秒前
9秒前
伯言完成签到,获得积分10
9秒前
爱笑如凡完成签到,获得积分10
9秒前
shhoing应助Zyj采纳,获得10
10秒前
Orange应助Zyj采纳,获得10
10秒前
10秒前
biu发布了新的文献求助10
10秒前
李爱国应助rainchan0227采纳,获得10
11秒前
恭喜完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336