EEG-based intention recognition with deep recurrent-convolution neural network: Performance and channel selection by Grad-CAM

脑-机接口 计算机科学 解码方法 脑电图 人工智能 频道(广播) 卷积(计算机科学) 卷积神经网络 模式识别(心理学) 选择(遗传算法) 接口(物质) 运动表象 语音识别 人工神经网络 算法 心理学 计算机网络 气泡 精神科 最大气泡压力法 并行计算
作者
Yurong Li,Hao Yang,Jixiang Li,Dongyi Chen,Min Du
出处
期刊:Neurocomputing [Elsevier]
卷期号:415: 225-233 被引量:86
标识
DOI:10.1016/j.neucom.2020.07.072
摘要

Electroencephalography (EEG) based Brain-Computer Interface (BCI) enables subjects to communicate with the outside world or control equipment using brain signals without passing through muscles and nerves. Many researchers in recent years have studied the non-invasive BCI systems. However, the efficiency of the intention decoding algorithm is affected by the random non-stationary and low signal-to-noise ratio characteristics of the EEG signal. Furthermore, channel selection is another important issue in BCI systems intention recognition. During intention recognition in BCI systems, the unnecessary information produced by redundant electrodes affects the decoding rate and deplete system resources. In this paper, we introduce a recurrent-convolution neural network model for intention recognition by learning decomposed spatio-temporal representations. We apply the novel Gradient-Class Activation Mapping (Grad-CAM) visualization technology to the channel selection. Grad-CAM uses the gradient of any classification, flowing into the last convolutional layer to produce a coarse localization map. Since the pixels of the localization map correspond to the spatial regions where the electrodes are placed, we select the channels that are more important for decision-making. We conduct an experiment using the public motor imagery EEG dataset EEGMMIDB. The experimental results demonstrate that our method achieves an accuracy of 97.36% at the full channel, outperforming many state-of-the-art models and baseline models. Although the decoding rate of our model is the same as the best model compared, our model has fewer parameters with faster training time. After the channel selection, our model maintains the intention decoding performance of 92.31% while reducing the number of channels by nearly half and saving system resources. Our method achieves an optimal trade-off between performance and the number of electrode channels for EEG intention decoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温芳奇发布了新的文献求助10
1秒前
2秒前
3秒前
沉静水儿完成签到,获得积分10
3秒前
liuxianglin2006完成签到,获得积分10
3秒前
思源应助ajjdnd采纳,获得10
4秒前
ssu完成签到,获得积分10
5秒前
5秒前
科研通AI6应助hhh采纳,获得10
5秒前
耿昊发布了新的文献求助10
7秒前
生动安波应助白嫖论文采纳,获得10
7秒前
王佳亮完成签到,获得积分10
7秒前
充电宝应助MCY采纳,获得10
7秒前
beiyoumilu完成签到,获得积分10
9秒前
汉堡包应助QQ采纳,获得10
9秒前
9秒前
yuC驳回了wanci应助
11秒前
11秒前
11秒前
杨胖胖完成签到,获得积分10
12秒前
脑洞疼应助英俊的白安采纳,获得10
13秒前
雨相所至发布了新的文献求助20
14秒前
科研通AI6应助耿昊采纳,获得10
14秒前
古重迷离完成签到 ,获得积分10
14秒前
14秒前
呵呵呵完成签到,获得积分10
15秒前
愉快的犀牛完成签到 ,获得积分10
16秒前
growl发布了新的文献求助10
16秒前
17秒前
17秒前
愉快若烟发布了新的文献求助10
17秒前
整齐的泥猴桃完成签到 ,获得积分10
18秒前
18秒前
20秒前
科研通AI6应助SY采纳,获得10
20秒前
秀丽笑容完成签到,获得积分10
20秒前
21秒前
zz发布了新的文献求助10
21秒前
Hello应助鼻揩了转去采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995