亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG-based intention recognition with deep recurrent-convolution neural network: Performance and channel selection by Grad-CAM

脑-机接口 计算机科学 解码方法 脑电图 人工智能 频道(广播) 卷积(计算机科学) 卷积神经网络 模式识别(心理学) 选择(遗传算法) 接口(物质) 运动表象 语音识别 人工神经网络 算法 心理学 计算机网络 气泡 精神科 最大气泡压力法 并行计算
作者
Yurong Li,Hao Yang,Jixiang Li,Dongyi Chen,Min Du
出处
期刊:Neurocomputing [Elsevier]
卷期号:415: 225-233 被引量:86
标识
DOI:10.1016/j.neucom.2020.07.072
摘要

Electroencephalography (EEG) based Brain-Computer Interface (BCI) enables subjects to communicate with the outside world or control equipment using brain signals without passing through muscles and nerves. Many researchers in recent years have studied the non-invasive BCI systems. However, the efficiency of the intention decoding algorithm is affected by the random non-stationary and low signal-to-noise ratio characteristics of the EEG signal. Furthermore, channel selection is another important issue in BCI systems intention recognition. During intention recognition in BCI systems, the unnecessary information produced by redundant electrodes affects the decoding rate and deplete system resources. In this paper, we introduce a recurrent-convolution neural network model for intention recognition by learning decomposed spatio-temporal representations. We apply the novel Gradient-Class Activation Mapping (Grad-CAM) visualization technology to the channel selection. Grad-CAM uses the gradient of any classification, flowing into the last convolutional layer to produce a coarse localization map. Since the pixels of the localization map correspond to the spatial regions where the electrodes are placed, we select the channels that are more important for decision-making. We conduct an experiment using the public motor imagery EEG dataset EEGMMIDB. The experimental results demonstrate that our method achieves an accuracy of 97.36% at the full channel, outperforming many state-of-the-art models and baseline models. Although the decoding rate of our model is the same as the best model compared, our model has fewer parameters with faster training time. After the channel selection, our model maintains the intention decoding performance of 92.31% while reducing the number of channels by nearly half and saving system resources. Our method achieves an optimal trade-off between performance and the number of electrode channels for EEG intention decoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助白奕采纳,获得10
2秒前
叶克思完成签到 ,获得积分10
6秒前
martin完成签到 ,获得积分10
7秒前
10秒前
黎明深雪完成签到 ,获得积分10
10秒前
YAKI关注了科研通微信公众号
11秒前
yuanyuan发布了新的文献求助10
14秒前
orixero应助youyou采纳,获得10
14秒前
Owen应助朱摩玑采纳,获得10
14秒前
24秒前
dj完成签到,获得积分10
26秒前
syalonyui完成签到,获得积分10
29秒前
YAKI发布了新的文献求助10
29秒前
31秒前
充电宝应助余闻问采纳,获得10
32秒前
ooo完成签到 ,获得积分10
34秒前
Criminology34应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
Orange应助科研通管家采纳,获得10
35秒前
ceeray23应助科研通管家采纳,获得10
35秒前
瀛瀛完成签到 ,获得积分0
37秒前
wtl发布了新的文献求助10
38秒前
47秒前
yanghao完成签到,获得积分10
49秒前
基金中中中完成签到,获得积分10
49秒前
52秒前
53秒前
fengyun1990发布了新的文献求助10
55秒前
斯文败类应助yuanyuan采纳,获得10
55秒前
55秒前
余闻问发布了新的文献求助10
57秒前
无花果应助wtl采纳,获得10
58秒前
单薄绿竹完成签到,获得积分10
1分钟前
余闻问完成签到,获得积分10
1分钟前
1分钟前
想吃芝士荔枝烤鱼完成签到,获得积分10
1分钟前
K先生完成签到 ,获得积分10
1分钟前
光亮的安双完成签到,获得积分10
1分钟前
1分钟前
脑洞疼应助fengyun1990采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599649
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838420
捐赠科研通 4669743
什么是DOI,文献DOI怎么找? 2538130
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898