EEG-based intention recognition with deep recurrent-convolution neural network: Performance and channel selection by Grad-CAM

脑-机接口 计算机科学 解码方法 脑电图 人工智能 频道(广播) 卷积(计算机科学) 卷积神经网络 模式识别(心理学) 选择(遗传算法) 接口(物质) 运动表象 语音识别 人工神经网络 算法 心理学 计算机网络 气泡 精神科 最大气泡压力法 并行计算
作者
Yurong Li,Hao Yang,Jixiang Li,Dongyi Chen,Min Du
出处
期刊:Neurocomputing [Elsevier]
卷期号:415: 225-233 被引量:86
标识
DOI:10.1016/j.neucom.2020.07.072
摘要

Electroencephalography (EEG) based Brain-Computer Interface (BCI) enables subjects to communicate with the outside world or control equipment using brain signals without passing through muscles and nerves. Many researchers in recent years have studied the non-invasive BCI systems. However, the efficiency of the intention decoding algorithm is affected by the random non-stationary and low signal-to-noise ratio characteristics of the EEG signal. Furthermore, channel selection is another important issue in BCI systems intention recognition. During intention recognition in BCI systems, the unnecessary information produced by redundant electrodes affects the decoding rate and deplete system resources. In this paper, we introduce a recurrent-convolution neural network model for intention recognition by learning decomposed spatio-temporal representations. We apply the novel Gradient-Class Activation Mapping (Grad-CAM) visualization technology to the channel selection. Grad-CAM uses the gradient of any classification, flowing into the last convolutional layer to produce a coarse localization map. Since the pixels of the localization map correspond to the spatial regions where the electrodes are placed, we select the channels that are more important for decision-making. We conduct an experiment using the public motor imagery EEG dataset EEGMMIDB. The experimental results demonstrate that our method achieves an accuracy of 97.36% at the full channel, outperforming many state-of-the-art models and baseline models. Although the decoding rate of our model is the same as the best model compared, our model has fewer parameters with faster training time. After the channel selection, our model maintains the intention decoding performance of 92.31% while reducing the number of channels by nearly half and saving system resources. Our method achieves an optimal trade-off between performance and the number of electrode channels for EEG intention decoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方汀发布了新的文献求助30
刚刚
华仔应助自由的中蓝采纳,获得10
刚刚
科研通AI6应助缥缈树叶采纳,获得20
1秒前
yy完成签到,获得积分10
1秒前
学术虫完成签到,获得积分10
2秒前
3秒前
小可发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
nsk发布了新的文献求助10
4秒前
4秒前
向阳而生完成签到,获得积分10
4秒前
4秒前
66完成签到,获得积分10
4秒前
4秒前
小蘑菇应助孙木楠采纳,获得10
4秒前
4秒前
5秒前
5秒前
7秒前
爆米花应助Mar采纳,获得10
7秒前
领导范儿应助松子采纳,获得10
7秒前
酷波er应助小畅采纳,获得10
8秒前
SciGPT应助BH采纳,获得10
8秒前
疯狂的寻绿完成签到,获得积分10
8秒前
花花发布了新的文献求助10
8秒前
9秒前
9秒前
shaft发布了新的文献求助20
10秒前
10秒前
www发布了新的文献求助10
10秒前
风清月莹发布了新的文献求助10
11秒前
XBJ完成签到,获得积分10
11秒前
潇洒的奇异果完成签到,获得积分10
12秒前
QQQ123完成签到,获得积分10
12秒前
自觉飞风完成签到 ,获得积分10
12秒前
13秒前
xu发布了新的文献求助10
13秒前
QQQ123发布了新的文献求助10
14秒前
香蕉觅云应助哦吼啦啦啦采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660641
求助须知:如何正确求助?哪些是违规求助? 4835016
关于积分的说明 15091506
捐赠科研通 4819242
什么是DOI,文献DOI怎么找? 2579181
邀请新用户注册赠送积分活动 1533670
关于科研通互助平台的介绍 1492441