Fault diagnosis of electrohydraulic actuator based on multiple source signals: An experimental investigation

计算机科学 冗余(工程) 执行机构 卷积神经网络 断层(地质) 可靠性(半导体) 人工智能 深度学习 试验数据 故障模拟器 人工神经网络 控制工程 实时计算 故障检测与隔离 工程类 功率(物理) 陷入故障 物理 地质学 操作系统 地震学 量子力学 程序设计语言
作者
Jianyu Wang,Jianguo Miao,Wei Wang,Fangfang Yang,Kwok‐Leung Tsui,Qiang Miao
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 224-238 被引量:25
标识
DOI:10.1016/j.neucom.2020.05.102
摘要

As a comparatively complicated and compact system with fast response, accurate control precision and high load-bearing capacity, electrohydraulic actuator (EHA) is generally composed of electronic control, hydraulic power, and mechanical drive systems, and has been widely used in aircrafts, mining machines, and transportation vehicles. Although a lot of redundancy designs are used in EHA to improve its operational reliability, failures are still inevitable due to long-term operation and harsh working environments. This paper conducts an experimental investigation on EHA fault diagnosis based on numerical simulation tests and real experimental tests. Multiple source domain signals are sampled from three types of sensors with multiple channels in the EHA's test platforms under variable control commands, thereby showing high redundancy of information. Another challenge is that the fault data sampled from an experimental test platform are more complex than that of the simulated data obtained from the AMESim simulation test platform. These characteristics may cause a huge challenge for traditional fault diagnosis methods. Recent development on deep learning has accelerated many classification tasks because of its end-to-end adaptive learning ability, while the application of deep learning in fault diagnosis of EHAs remains relatively rare. Therefore, a deep convolutional neural network (CNN) is proposed for EHA fault diagnosis, and comparison with several popular data-driven methods are conducted using two datasets sampled from the AMESim simulation test platform and experimental test platform. Among these classifiers, the proposed convolutional neural network is more robust, especially when handling complicated real experimental test data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ling22发布了新的文献求助10
3秒前
balalal完成签到,获得积分10
3秒前
吴龙发布了新的文献求助10
3秒前
3秒前
zd200572发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
怕孤单的安蕾完成签到,获得积分10
7秒前
7秒前
如常完成签到,获得积分10
8秒前
轻松绮露发布了新的文献求助10
8秒前
Amberwdd发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
starlx0813发布了新的文献求助10
11秒前
11秒前
qqqq发布了新的文献求助10
11秒前
11秒前
11秒前
吴龙完成签到,获得积分10
11秒前
12秒前
今后应助缓慢的皮卡丘采纳,获得10
12秒前
李润春完成签到,获得积分10
13秒前
13秒前
zz完成签到,获得积分20
13秒前
13秒前
丁丁丁完成签到,获得积分10
14秒前
张11发布了新的文献求助10
14秒前
木火灰发布了新的文献求助10
14秒前
Z赵完成签到 ,获得积分10
14秒前
李健应助dmj采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
JamesPei应助冯娇娇采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133