Fault diagnosis of electrohydraulic actuator based on multiple source signals: An experimental investigation

计算机科学 冗余(工程) 执行机构 卷积神经网络 断层(地质) 可靠性(半导体) 人工智能 深度学习 试验数据 故障模拟器 人工神经网络 控制工程 实时计算 故障检测与隔离 工程类 功率(物理) 陷入故障 物理 地质学 操作系统 地震学 量子力学 程序设计语言
作者
Jianyu Wang,Jianguo Miao,Wei Wang,Fangfang Yang,Kwok‐Leung Tsui,Qiang Miao
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 224-238 被引量:25
标识
DOI:10.1016/j.neucom.2020.05.102
摘要

As a comparatively complicated and compact system with fast response, accurate control precision and high load-bearing capacity, electrohydraulic actuator (EHA) is generally composed of electronic control, hydraulic power, and mechanical drive systems, and has been widely used in aircrafts, mining machines, and transportation vehicles. Although a lot of redundancy designs are used in EHA to improve its operational reliability, failures are still inevitable due to long-term operation and harsh working environments. This paper conducts an experimental investigation on EHA fault diagnosis based on numerical simulation tests and real experimental tests. Multiple source domain signals are sampled from three types of sensors with multiple channels in the EHA's test platforms under variable control commands, thereby showing high redundancy of information. Another challenge is that the fault data sampled from an experimental test platform are more complex than that of the simulated data obtained from the AMESim simulation test platform. These characteristics may cause a huge challenge for traditional fault diagnosis methods. Recent development on deep learning has accelerated many classification tasks because of its end-to-end adaptive learning ability, while the application of deep learning in fault diagnosis of EHAs remains relatively rare. Therefore, a deep convolutional neural network (CNN) is proposed for EHA fault diagnosis, and comparison with several popular data-driven methods are conducted using two datasets sampled from the AMESim simulation test platform and experimental test platform. Among these classifiers, the proposed convolutional neural network is more robust, especially when handling complicated real experimental test data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JJ发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
赘婿应助初见采纳,获得10
1秒前
1秒前
luojy关注了科研通微信公众号
2秒前
2秒前
2秒前
优雅沛文发布了新的文献求助10
2秒前
David发布了新的文献求助10
2秒前
2秒前
calm发布了新的文献求助20
2秒前
2秒前
拼搏翅膀完成签到,获得积分10
2秒前
3秒前
NexusExplorer应助Sir.夏季风采纳,获得10
3秒前
小牛马发布了新的文献求助10
3秒前
一站到底完成签到,获得积分10
3秒前
3秒前
3秒前
aaa完成签到,获得积分10
3秒前
anthea完成签到 ,获得积分10
3秒前
4秒前
张志超发布了新的文献求助10
4秒前
4秒前
陈乔乔完成签到 ,获得积分10
4秒前
同力力力完成签到,获得积分10
4秒前
4秒前
11发布了新的文献求助10
4秒前
所所应助郁馨云梦采纳,获得10
5秒前
lw完成签到,获得积分10
5秒前
吴晨曦发布了新的文献求助10
5秒前
清歌浊酒完成签到,获得积分10
5秒前
6秒前
6秒前
fang发布了新的文献求助10
6秒前
养叶子发布了新的文献求助10
6秒前
雅nice完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661387
求助须知:如何正确求助?哪些是违规求助? 4838678
关于积分的说明 15095847
捐赠科研通 4820153
什么是DOI,文献DOI怎么找? 2579773
邀请新用户注册赠送积分活动 1534034
关于科研通互助平台的介绍 1492769