Fault diagnosis of electrohydraulic actuator based on multiple source signals: An experimental investigation

计算机科学 冗余(工程) 执行机构 卷积神经网络 断层(地质) 可靠性(半导体) 人工智能 深度学习 试验数据 故障模拟器 人工神经网络 控制工程 实时计算 故障检测与隔离 工程类 功率(物理) 陷入故障 物理 地质学 操作系统 地震学 量子力学 程序设计语言
作者
Jianyu Wang,Jianguo Miao,Wei Wang,Fangfang Yang,Kwok‐Leung Tsui,Qiang Miao
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 224-238 被引量:25
标识
DOI:10.1016/j.neucom.2020.05.102
摘要

As a comparatively complicated and compact system with fast response, accurate control precision and high load-bearing capacity, electrohydraulic actuator (EHA) is generally composed of electronic control, hydraulic power, and mechanical drive systems, and has been widely used in aircrafts, mining machines, and transportation vehicles. Although a lot of redundancy designs are used in EHA to improve its operational reliability, failures are still inevitable due to long-term operation and harsh working environments. This paper conducts an experimental investigation on EHA fault diagnosis based on numerical simulation tests and real experimental tests. Multiple source domain signals are sampled from three types of sensors with multiple channels in the EHA's test platforms under variable control commands, thereby showing high redundancy of information. Another challenge is that the fault data sampled from an experimental test platform are more complex than that of the simulated data obtained from the AMESim simulation test platform. These characteristics may cause a huge challenge for traditional fault diagnosis methods. Recent development on deep learning has accelerated many classification tasks because of its end-to-end adaptive learning ability, while the application of deep learning in fault diagnosis of EHAs remains relatively rare. Therefore, a deep convolutional neural network (CNN) is proposed for EHA fault diagnosis, and comparison with several popular data-driven methods are conducted using two datasets sampled from the AMESim simulation test platform and experimental test platform. Among these classifiers, the proposed convolutional neural network is more robust, especially when handling complicated real experimental test data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青山绿水完成签到,获得积分10
1秒前
四大天王看电势完成签到,获得积分10
1秒前
wing完成签到 ,获得积分10
1秒前
伴奏小胖完成签到 ,获得积分10
1秒前
柠静樨完成签到,获得积分10
1秒前
陈陈完成签到,获得积分10
1秒前
李静发布了新的文献求助10
2秒前
3秒前
3秒前
yshj完成签到 ,获得积分10
3秒前
汉堡包应助NorthWang采纳,获得10
3秒前
笨笨西装完成签到,获得积分10
4秒前
federish完成签到 ,获得积分10
4秒前
小青椒应助科研通管家采纳,获得60
4秒前
那时花开应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
amberzyc应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
5秒前
那时花开应助科研通管家采纳,获得10
5秒前
终梦应助科研通管家采纳,获得20
5秒前
终梦应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
nenoaowu完成签到,获得积分10
5秒前
5秒前
汤圆完成签到,获得积分10
5秒前
ruby30完成签到,获得积分10
5秒前
谨慎的凝丝完成签到,获得积分10
5秒前
舒服的月饼完成签到 ,获得积分10
6秒前
余鱼鱼发布了新的文献求助10
6秒前
7秒前
禾页完成签到 ,获得积分10
8秒前
马铃薯完成签到,获得积分10
8秒前
拼搏尔风完成签到,获得积分10
9秒前
DduYy完成签到,获得积分10
10秒前
11秒前
塘仔完成签到,获得积分10
11秒前
milv5完成签到,获得积分10
11秒前
直率的问筠完成签到,获得积分10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347799
求助须知:如何正确求助?哪些是违规求助? 4482040
关于积分的说明 13948663
捐赠科研通 4380425
什么是DOI,文献DOI怎么找? 2406961
邀请新用户注册赠送积分活动 1399538
关于科研通互助平台的介绍 1372763