Fault diagnosis of electrohydraulic actuator based on multiple source signals: An experimental investigation

计算机科学 冗余(工程) 执行机构 卷积神经网络 断层(地质) 可靠性(半导体) 人工智能 深度学习 试验数据 故障模拟器 人工神经网络 控制工程 实时计算 故障检测与隔离 工程类 功率(物理) 陷入故障 物理 地质学 操作系统 地震学 量子力学 程序设计语言
作者
Jianyu Wang,Jianguo Miao,Wei Wang,Fangfang Yang,Kwok‐Leung Tsui,Qiang Miao
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 224-238 被引量:25
标识
DOI:10.1016/j.neucom.2020.05.102
摘要

As a comparatively complicated and compact system with fast response, accurate control precision and high load-bearing capacity, electrohydraulic actuator (EHA) is generally composed of electronic control, hydraulic power, and mechanical drive systems, and has been widely used in aircrafts, mining machines, and transportation vehicles. Although a lot of redundancy designs are used in EHA to improve its operational reliability, failures are still inevitable due to long-term operation and harsh working environments. This paper conducts an experimental investigation on EHA fault diagnosis based on numerical simulation tests and real experimental tests. Multiple source domain signals are sampled from three types of sensors with multiple channels in the EHA's test platforms under variable control commands, thereby showing high redundancy of information. Another challenge is that the fault data sampled from an experimental test platform are more complex than that of the simulated data obtained from the AMESim simulation test platform. These characteristics may cause a huge challenge for traditional fault diagnosis methods. Recent development on deep learning has accelerated many classification tasks because of its end-to-end adaptive learning ability, while the application of deep learning in fault diagnosis of EHAs remains relatively rare. Therefore, a deep convolutional neural network (CNN) is proposed for EHA fault diagnosis, and comparison with several popular data-driven methods are conducted using two datasets sampled from the AMESim simulation test platform and experimental test platform. Among these classifiers, the proposed convolutional neural network is more robust, especially when handling complicated real experimental test data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Loong312完成签到,获得积分10
1秒前
卷卷发布了新的文献求助10
1秒前
mysoul123发布了新的文献求助10
1秒前
nenshen完成签到,获得积分10
3秒前
4秒前
爱学习的婷完成签到 ,获得积分10
4秒前
可靠翼完成签到,获得积分10
4秒前
打打应助Lee采纳,获得10
6秒前
6秒前
aaddcccc完成签到,获得积分10
6秒前
赧赧发布了新的文献求助10
7秒前
英勇的白风完成签到,获得积分10
8秒前
9秒前
11秒前
12秒前
13秒前
13秒前
高三疯发布了新的文献求助10
14秒前
都是发布了新的文献求助100
15秒前
书晨发布了新的文献求助10
15秒前
NexusExplorer应助淡然浅笑采纳,获得10
15秒前
16秒前
zhl完成签到,获得积分10
16秒前
duizhang发布了新的文献求助30
16秒前
美丽的若云完成签到,获得积分10
16秒前
健忘的老姆完成签到,获得积分10
17秒前
19秒前
金22发布了新的文献求助10
19秒前
元谷雪应助都是采纳,获得10
20秒前
酷波er应助mmqq采纳,获得10
20秒前
科研通AI2S应助hcx采纳,获得10
21秒前
自渡发布了新的文献求助10
21秒前
姜粒关注了科研通微信公众号
22秒前
22秒前
sekidesu发布了新的文献求助30
23秒前
24秒前
所所应助kylin采纳,获得10
24秒前
石勒苏益格完成签到,获得积分10
25秒前
26秒前
26秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129723
求助须知:如何正确求助?哪些是违规求助? 2780500
关于积分的说明 7748555
捐赠科研通 2435832
什么是DOI,文献DOI怎么找? 1294313
科研通“疑难数据库(出版商)”最低求助积分说明 623670
版权声明 600570