已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fault diagnosis of electrohydraulic actuator based on multiple source signals: An experimental investigation

计算机科学 冗余(工程) 执行机构 卷积神经网络 断层(地质) 可靠性(半导体) 人工智能 深度学习 试验数据 故障模拟器 人工神经网络 控制工程 实时计算 故障检测与隔离 工程类 功率(物理) 陷入故障 物理 地质学 操作系统 地震学 量子力学 程序设计语言
作者
Jianyu Wang,Jianguo Miao,Wei Wang,Fangfang Yang,Kwok‐Leung Tsui,Qiang Miao
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 224-238 被引量:25
标识
DOI:10.1016/j.neucom.2020.05.102
摘要

As a comparatively complicated and compact system with fast response, accurate control precision and high load-bearing capacity, electrohydraulic actuator (EHA) is generally composed of electronic control, hydraulic power, and mechanical drive systems, and has been widely used in aircrafts, mining machines, and transportation vehicles. Although a lot of redundancy designs are used in EHA to improve its operational reliability, failures are still inevitable due to long-term operation and harsh working environments. This paper conducts an experimental investigation on EHA fault diagnosis based on numerical simulation tests and real experimental tests. Multiple source domain signals are sampled from three types of sensors with multiple channels in the EHA's test platforms under variable control commands, thereby showing high redundancy of information. Another challenge is that the fault data sampled from an experimental test platform are more complex than that of the simulated data obtained from the AMESim simulation test platform. These characteristics may cause a huge challenge for traditional fault diagnosis methods. Recent development on deep learning has accelerated many classification tasks because of its end-to-end adaptive learning ability, while the application of deep learning in fault diagnosis of EHAs remains relatively rare. Therefore, a deep convolutional neural network (CNN) is proposed for EHA fault diagnosis, and comparison with several popular data-driven methods are conducted using two datasets sampled from the AMESim simulation test platform and experimental test platform. Among these classifiers, the proposed convolutional neural network is more robust, especially when handling complicated real experimental test data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵碧凡完成签到 ,获得积分10
1秒前
两个轮完成签到,获得积分10
2秒前
缺心眼儿完成签到,获得积分10
3秒前
小羊咩完成签到 ,获得积分0
5秒前
Rolling完成签到 ,获得积分10
5秒前
德胜岩山神完成签到,获得积分10
6秒前
大帅比完成签到 ,获得积分10
7秒前
灵巧伊完成签到,获得积分10
8秒前
缺心眼儿发布了新的文献求助10
8秒前
义气丹雪应助slby采纳,获得10
10秒前
泥巴完成签到,获得积分10
10秒前
隐形曼青应助德胜岩山神采纳,获得10
10秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
16秒前
帅气善斓应助Jsl采纳,获得10
16秒前
18秒前
dzll发布了新的文献求助10
19秒前
滴嘟滴嘟完成签到 ,获得积分10
22秒前
24秒前
dzll完成签到,获得积分10
24秒前
YUE发布了新的文献求助10
24秒前
bc应助科研通管家采纳,获得30
25秒前
25秒前
Orange应助科研通管家采纳,获得10
25秒前
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
研友_8K2QJZ完成签到,获得积分10
25秒前
繁华若梦完成签到 ,获得积分10
25秒前
26秒前
26秒前
木棉完成签到,获得积分10
26秒前
隐形曼青应助现代的手套采纳,获得80
27秒前
Arslan完成签到,获得积分20
27秒前
田様应助靖旎采纳,获得10
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705551
求助须知:如何正确求助?哪些是违规求助? 5164845
关于积分的说明 15245734
捐赠科研通 4859361
什么是DOI,文献DOI怎么找? 2607785
邀请新用户注册赠送积分活动 1558875
关于科研通互助平台的介绍 1516424