Fault diagnosis of electrohydraulic actuator based on multiple source signals: An experimental investigation

计算机科学 冗余(工程) 执行机构 卷积神经网络 断层(地质) 可靠性(半导体) 人工智能 深度学习 试验数据 故障模拟器 人工神经网络 控制工程 实时计算 故障检测与隔离 工程类 功率(物理) 陷入故障 物理 地质学 操作系统 地震学 量子力学 程序设计语言
作者
Jianyu Wang,Jianguo Miao,Wei Wang,Fangfang Yang,Kwok‐Leung Tsui,Qiang Miao
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 224-238 被引量:25
标识
DOI:10.1016/j.neucom.2020.05.102
摘要

As a comparatively complicated and compact system with fast response, accurate control precision and high load-bearing capacity, electrohydraulic actuator (EHA) is generally composed of electronic control, hydraulic power, and mechanical drive systems, and has been widely used in aircrafts, mining machines, and transportation vehicles. Although a lot of redundancy designs are used in EHA to improve its operational reliability, failures are still inevitable due to long-term operation and harsh working environments. This paper conducts an experimental investigation on EHA fault diagnosis based on numerical simulation tests and real experimental tests. Multiple source domain signals are sampled from three types of sensors with multiple channels in the EHA's test platforms under variable control commands, thereby showing high redundancy of information. Another challenge is that the fault data sampled from an experimental test platform are more complex than that of the simulated data obtained from the AMESim simulation test platform. These characteristics may cause a huge challenge for traditional fault diagnosis methods. Recent development on deep learning has accelerated many classification tasks because of its end-to-end adaptive learning ability, while the application of deep learning in fault diagnosis of EHAs remains relatively rare. Therefore, a deep convolutional neural network (CNN) is proposed for EHA fault diagnosis, and comparison with several popular data-driven methods are conducted using two datasets sampled from the AMESim simulation test platform and experimental test platform. Among these classifiers, the proposed convolutional neural network is more robust, especially when handling complicated real experimental test data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hu完成签到,获得积分10
1秒前
萌only发布了新的文献求助10
1秒前
1秒前
1秒前
英俊的铭应助王皮皮采纳,获得10
1秒前
道松先生发布了新的文献求助10
1秒前
LiuHK完成签到,获得积分10
2秒前
orixero应助daggeraxe采纳,获得10
2秒前
亗sui发布了新的文献求助10
2秒前
小二郎应助川上富江采纳,获得10
2秒前
lsy发布了新的文献求助10
2秒前
LX发布了新的文献求助10
2秒前
樱唐小完犊子关注了科研通微信公众号
3秒前
MichealYo发布了新的文献求助10
3秒前
3秒前
巨大爸爸完成签到,获得积分10
4秒前
甜美煎蛋完成签到,获得积分10
5秒前
manyi1972完成签到,获得积分10
5秒前
lll发布了新的文献求助10
5秒前
战钺蟠龙发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
深情安青应助寒月如雪采纳,获得10
8秒前
朱朱珠珠发布了新的文献求助10
9秒前
萤火完成签到 ,获得积分10
10秒前
10秒前
不爱吃魔芋完成签到,获得积分10
10秒前
zzz关闭了zzz文献求助
11秒前
wxy发布了新的文献求助10
12秒前
12秒前
活泼宛海发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
LX完成签到,获得积分20
13秒前
大气艳一完成签到,获得积分10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727567
求助须知:如何正确求助?哪些是违规求助? 5309169
关于积分的说明 15311368
捐赠科研通 4875043
什么是DOI,文献DOI怎么找? 2618493
邀请新用户注册赠送积分活动 1568219
关于科研通互助平台的介绍 1524904