Fault diagnosis of electrohydraulic actuator based on multiple source signals: An experimental investigation

计算机科学 冗余(工程) 执行机构 卷积神经网络 断层(地质) 可靠性(半导体) 人工智能 深度学习 试验数据 故障模拟器 人工神经网络 控制工程 实时计算 故障检测与隔离 工程类 功率(物理) 陷入故障 物理 地质学 操作系统 地震学 量子力学 程序设计语言
作者
Jianyu Wang,Jianguo Miao,Wei Wang,Fangfang Yang,Kwok‐Leung Tsui,Qiang Miao
出处
期刊:Neurocomputing [Elsevier]
卷期号:417: 224-238 被引量:25
标识
DOI:10.1016/j.neucom.2020.05.102
摘要

As a comparatively complicated and compact system with fast response, accurate control precision and high load-bearing capacity, electrohydraulic actuator (EHA) is generally composed of electronic control, hydraulic power, and mechanical drive systems, and has been widely used in aircrafts, mining machines, and transportation vehicles. Although a lot of redundancy designs are used in EHA to improve its operational reliability, failures are still inevitable due to long-term operation and harsh working environments. This paper conducts an experimental investigation on EHA fault diagnosis based on numerical simulation tests and real experimental tests. Multiple source domain signals are sampled from three types of sensors with multiple channels in the EHA's test platforms under variable control commands, thereby showing high redundancy of information. Another challenge is that the fault data sampled from an experimental test platform are more complex than that of the simulated data obtained from the AMESim simulation test platform. These characteristics may cause a huge challenge for traditional fault diagnosis methods. Recent development on deep learning has accelerated many classification tasks because of its end-to-end adaptive learning ability, while the application of deep learning in fault diagnosis of EHAs remains relatively rare. Therefore, a deep convolutional neural network (CNN) is proposed for EHA fault diagnosis, and comparison with several popular data-driven methods are conducted using two datasets sampled from the AMESim simulation test platform and experimental test platform. Among these classifiers, the proposed convolutional neural network is more robust, especially when handling complicated real experimental test data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
顺心的芝麻完成签到 ,获得积分10
2秒前
Dharma_Bums发布了新的文献求助10
3秒前
科研通AI2S应助ironsilica采纳,获得10
4秒前
4秒前
SSY完成签到,获得积分10
5秒前
LongHua发布了新的文献求助10
9秒前
缪道之完成签到 ,获得积分10
9秒前
10秒前
木偶完成签到,获得积分10
10秒前
小猫完成签到 ,获得积分10
10秒前
huayi完成签到,获得积分10
12秒前
典雅胜发布了新的文献求助10
13秒前
姚怜南完成签到,获得积分10
13秒前
Norah完成签到,获得积分10
14秒前
14秒前
饱满的毛巾完成签到,获得积分10
15秒前
玖月完成签到 ,获得积分0
16秒前
16秒前
17秒前
潇潇完成签到,获得积分10
18秒前
pluto完成签到,获得积分0
18秒前
20秒前
支雨泽发布了新的文献求助10
21秒前
烟花应助TulIP采纳,获得10
22秒前
辛勤的小熊猫完成签到,获得积分10
22秒前
粥粥粥完成签到,获得积分20
23秒前
queer完成签到,获得积分10
23秒前
天行马完成签到,获得积分10
23秒前
juphen2发布了新的文献求助10
24秒前
芜湖起飞完成签到 ,获得积分10
25秒前
wang完成签到,获得积分10
26秒前
26秒前
zhangj696完成签到,获得积分10
27秒前
Xavier完成签到,获得积分10
28秒前
洁净的黑米完成签到,获得积分10
29秒前
圈圈应助科研通管家采纳,获得10
29秒前
xz应助科研通管家采纳,获得10
29秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688574
关于积分的说明 14854759
捐赠科研通 4693983
什么是DOI,文献DOI怎么找? 2540888
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806