Utilization of Bidirectional Cation Transport in a Thin Film Composite Membrane: Selective Removal and Reclamation of Ammonium from Synthetic Digested Sludge Centrate via an Osmosis–Distillation Hybrid Membrane Process

正渗透 化学 蒸馏 膜蒸馏 色谱法 化学工程 渗透 废水 薄膜复合膜 反渗透 废物管理 海水淡化 有机化学 生物化学 工程类
作者
Peizhi Wang,Ji Li,Xiaolei Zhang,Xinglin Lu,Qianliang Liu,Tao Zhang,Wei Cheng,Jun Ma
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:54 (16): 10313-10322 被引量:19
标识
DOI:10.1021/acs.est.0c01496
摘要

Selective removal and resource recovery of ammonium nitrogen (NH4+–N) from high-strength ammonium waste streams is of practical importance for biological wastewater treatment and environmental protection. In this study, we demonstrate the simultaneous removal and reclamation of ammonium from synthetic digested sludge centrate via a novel osmosis-distillation hybrid membrane (ODHM) process. Using NaHCO3 as the draw solute, ammonium diffuses from the synthetic centrate to the draw solution by utilizing the bidirectional cation transport nature of the thin film composite (TFC) membrane. Then, NH4+ is converted to gaseous NH3 at 60 °C and recovered by a sweeping gas membrane distillation (SGMD) process. Herein, the bidirectional transport of monovalent cations in the osmotic process, selectivity of TFC membranes for different cations, and recovery of the draw solution following the extraction of ammonia through the SGMD process were systematically investigated. The removal of NH4+–N from the synthetic centrate achieved 21.34% during a 6-h continuous operation of the ODHM system, with ammonium fluxes through the TFC and SGMD membranes at 1.39 and 0.57 mol m–2 h–1, respectively. A secondary interfacial polymerization was proposed to further enhance ammonium transport through the TFC membrane. Results reported here highlight the potential of the ODHM process for the selective removal and reclamation of ammonium from ammonium-rich waste streams.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tree发布了新的文献求助10
刚刚
jiebai发布了新的文献求助10
刚刚
刚刚
hqy完成签到,获得积分10
刚刚
cocopan发布了新的文献求助10
1秒前
blenda发布了新的文献求助20
2秒前
万物可爱完成签到 ,获得积分10
3秒前
爆米花应助LHW采纳,获得10
3秒前
3秒前
嘻嘻哈哈完成签到 ,获得积分10
3秒前
不弱小妖完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
somous完成签到,获得积分10
4秒前
Msong发布了新的文献求助10
4秒前
RB完成签到,获得积分10
4秒前
认真黑猫发布了新的文献求助20
4秒前
5秒前
5秒前
李林完成签到,获得积分10
6秒前
jack完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
烟花应助lalala采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
小花发布了新的文献求助10
10秒前
zhong发布了新的文献求助10
11秒前
he大海贼完成签到,获得积分10
11秒前
12秒前
清见的心完成签到,获得积分10
12秒前
12秒前
Peyton Why发布了新的文献求助10
12秒前
大模型应助尺素寸心采纳,获得10
13秒前
14秒前
武映易完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809