Learning Common Harmonic Waves on Stiefel Manifold - A New Mathematical Approach for Brain Network Analyses

斯蒂弗尔流形 歧管对齐 歧管(流体力学) 谐波 脑电波 计算机科学 非线性降维 物理 数学 人工智能 神经科学 声学 心理学 纯数学 工程类 脑电图 降维 机械工程
作者
Jiazhou Chen,Guoqiang Han,Hongmin Cai,Defu Yang,Paul J. Laurienti,Martin Styner,Guorong Wu
出处
期刊:University of North Carolina at Chapel Hill - Carolina Digital Repository 被引量:1
标识
DOI:10.17615/sn59-ms82
摘要

Converging evidence shows that disease-relevant brain alterations do not appear in random brain locations, instead, its spatial pattern follows large scale brain networks. In this context, a powerful network analysis approach with a mathematical foundation is indispensable to understand the mechanism of neuropathological events spreading throughout the brain. Indeed, the topology of each brain network is governed by its native harmonic waves, which are a set of orthogonal bases derived from the Eigen-system of the underlying Laplacian matrix. To that end, we propose a novel connectome harmonic analysis framework to provide enhanced mathematical insights by detecting frequency-based alterations relevant to brain disorders. The backbone of our framework is a novel manifold algebra appropriate for inference across harmonic waves that overcomes the limitations of using classic Euclidean operations on irregular data structures. The individual harmonic difference is measured by a set of common harmonic waves learned from a population of individual Eigen systems, where each native Eigen-system is regarded as a sample drawn from the Stiefel manifold. Specifically, a manifold optimization scheme is tailored to find the common harmonic waves which reside at the center of Stiefel manifold. To that end, the common harmonic waves constitute the new neuro-biological bases to understand disease progression. Each harmonic wave exhibits a unique propagation pattern of neuro-pathological burdens spreading across brain networks. The statistical power of our novel connectome harmonic analysis approach is evaluated by identifying frequency-based alterations relevant to Alzheimer's disease, where our learning-based manifold approach discovers more significant and reproducible network dysfunction patterns compared to Euclidian methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助chenjun7080采纳,获得10
刚刚
1秒前
CodeCraft应助白方明采纳,获得10
1秒前
2秒前
Jerry_Guo发布了新的文献求助10
2秒前
感动的友容完成签到,获得积分10
3秒前
迟大猫应助朴素海亦采纳,获得10
3秒前
聪慧寄凡发布了新的文献求助10
3秒前
4秒前
在水一方应助chenbin采纳,获得10
5秒前
孤岛飞鹰完成签到,获得积分10
6秒前
迟大猫应助白杨采纳,获得20
7秒前
8秒前
8秒前
8秒前
chenyu发布了新的文献求助10
8秒前
gege完成签到,获得积分20
11秒前
orixero应助白方明采纳,获得10
12秒前
好好学习发布了新的文献求助10
13秒前
虚幻的访旋发布了新的文献求助100
14秒前
俏皮的芷容完成签到,获得积分20
15秒前
15秒前
格子布完成签到,获得积分10
15秒前
17秒前
爆米花应助gg采纳,获得30
17秒前
科研通AI5应助li采纳,获得10
18秒前
19秒前
Hello应助Figbiliy采纳,获得10
19秒前
stuffmatter应助朴素海亦采纳,获得10
19秒前
前路完成签到,获得积分10
19秒前
20秒前
Akim应助riqiu采纳,获得10
20秒前
十一关注了科研通微信公众号
21秒前
科研通AI5应助zzz采纳,获得10
22秒前
zeilawenrou完成签到,获得积分10
22秒前
22秒前
Owen应助小葵ty采纳,获得10
23秒前
风汐5423完成签到,获得积分10
23秒前
Mipaa完成签到,获得积分10
23秒前
科研通AI5应助好好学习采纳,获得10
24秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483444
求助须知:如何正确求助?哪些是违规求助? 3072776
关于积分的说明 9127955
捐赠科研通 2764341
什么是DOI,文献DOI怎么找? 1517151
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797