Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: Comparison of three statistical models

全国健康与营养检查调查 肥胖 邻苯二甲酸盐 腹部肥胖 体质指数 腰围 逻辑回归 环境卫生 化学 医学 内科学 人口 有机化学
作者
Yuqing Zhang,Tianyu Dong,Weiyue Hu,Xu Wang,Bo Xu,Zhong‐Ning Lin,Tim Hofer,Paweł Stefanoff,Ying Chen,Xinru Wang,Yankai Xia
出处
期刊:Environment International [Elsevier]
卷期号:123: 325-336 被引量:471
标识
DOI:10.1016/j.envint.2018.11.076
摘要

The evaluation of the chemical impact on human health is usually constrained to the analysis of the health effects of exposure to a single chemical or a group of similar chemicals at one time. The effects of chemical mixtures are seldom analyzed. In this study, we applied three statistical models to assess the association between the exposure to a mixture of seven xenobiotics (three phthalate metabolites, two phenols, and two pesticides) and obesity. Urinary levels of environmental phenols, pesticides, and phthalate metabolites were measured in adults who participated in the U.S.-based National Health and Nutrition Examination Survey (NHANES) from 2013 to 2014. Body examination was conducted to determine obesity. We fitted multivariable models, using generalized linear (here both logistic and linear) regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models to estimate the association between chemical exposures and obesity. Of 1269 individuals included in our final analysis, 38.5% had general obesity and 58.0% had abdominal obesity. In the logistic regression model established for each single chemical, bisphenol S (BPS), mono (carboxyoctyl) phthalate (MCOP), and mono (2-ethyl-5-carboxypentyl) phthalate (MECPP) were associated with both general and abdominal obesity (fourth vs. first quartile). In linear regression, MCOP was associated with BMI and waist circumference. In WQS regression analysis, the WQS index was significantly associated with both general obesity (OR = 1.63, 95% CI: 1.21–2.20) and abdominal obesity (OR = 1.66, 95% CI: 1.18–2.34). MCOP, bisphenol A (BPA), bisphenol S (BPS), and mono ethyl phthalate (MEP) were the most heavily weighing chemicals. In BKMR analysis, the overall effect of mixture was significantly associated with general obesity when all the chemicals were at their 60th percentile or above it, compared to all of them at their 50th percentile. MCOP, BPA, and BPS showed positive trends. By contrast, MECPP showed a flat and modest inverse trend. When comparing results from these three models, MCOP, BPA, and BPS were identified as the most important factors associated with obesity. We recommend estimating the joint effects of chemical mixtures by applying diverse statistical methods and interpreting their results together, considering their advantages and disadvantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
11完成签到,获得积分10
1秒前
青哲志宇完成签到,获得积分10
1秒前
堇妗发布了新的文献求助10
1秒前
Aletta完成签到,获得积分10
1秒前
1秒前
雨旸时若发布了新的文献求助10
1秒前
2秒前
友好聋五完成签到,获得积分10
3秒前
NOCOZ完成签到,获得积分20
3秒前
hunhun发布了新的文献求助10
3秒前
落后以旋发布了新的文献求助10
3秒前
Niki发布了新的文献求助50
3秒前
lxy发布了新的文献求助10
4秒前
zfd完成签到,获得积分10
4秒前
HOAN应助xxx采纳,获得100
4秒前
图图羊发布了新的文献求助10
4秒前
5秒前
天天快乐应助ltq采纳,获得10
5秒前
5秒前
梅花完成签到,获得积分10
5秒前
研友_LOqqmZ发布了新的文献求助10
5秒前
大力南风发布了新的文献求助10
6秒前
6秒前
江湖笑完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
hyy发布了新的文献求助10
7秒前
mookie发布了新的文献求助10
8秒前
失眠的访枫完成签到 ,获得积分10
8秒前
HOAN应助Bagel采纳,获得30
8秒前
guandada发布了新的文献求助10
8秒前
8秒前
优美茹妖发布了新的文献求助10
8秒前
美少女完成签到,获得积分10
8秒前
Owen应助微凉采纳,获得10
9秒前
9秒前
zlh发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718526
求助须知:如何正确求助?哪些是违规求助? 5253251
关于积分的说明 15286270
捐赠科研通 4868688
什么是DOI,文献DOI怎么找? 2614382
邀请新用户注册赠送积分活动 1564207
关于科研通互助平台的介绍 1521755