Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis

枯草芽孢杆菌 产量(工程) 碳纤维 氧化还原 生物化学 化学 N-乙酰氨基葡萄糖 新陈代谢 生物 细菌 计算机科学 有机化学 材料科学 复合数 遗传学 冶金 算法
作者
Yang Gu,Xueqin Lv,Yanfeng Liu,Jianghua Li,Guocheng Du,Jian Chen,Rodrigo Ledesma‐Amaro,Long Liu
出处
期刊:Metabolic Engineering [Elsevier BV]
卷期号:51: 59-69 被引量:80
标识
DOI:10.1016/j.ymben.2018.10.002
摘要

Abstract One of the primary goals of microbial metabolic engineering is to achieve high titer, yield and productivity (TYP) of engineered strains. This TYP index requires optimized carbon flux toward desired molecule with minimal by-product formation. De novo redesign of central carbon and redox metabolism holds great promise to alleviate pathway bottleneck and improve carbon and energy utilization efficiency. The engineered strain, with the overexpression or deletion of multiple genes, typically can’t meet the TYP index, due to overflow of central carbon and redox metabolism that compromise the final yield, despite a high titer or productivity might be achieved. To solve this challenge, we reprogramed the central carbon and redox metabolism of Bacillus subtilis and achieved high TYP production of N-acetylglucosamine. Specifically, a “push–pull–promote” approach efficiently reduced the overflown acetyl-CoA flux and eliminated byproduct formation. Four synthetic NAD(P)-independent metabolic routes were introduced to rewire the redox metabolism to minimize energy loss. Implementation of these genetic strategies led us to obtain a B. subtilis strain with superior TYP index. GlcNAc titer in shake flask was increased from 6.6 g L−1 to 24.5 g L−1, the yield was improved from 0.115 to 0.468 g GlcNAc g−1 glucose, and the productivity was increased from 0.274 to 0.437 g L−1 h−1. These titer and yield are the highest levels ever reported and, the yield reached 98% of the theoretical pathway yield (0.478 g g−1 glucose). The synthetic redesign of carbon metabolism and redox metabolism represent a novel and general metabolic engineering strategy to improve the performance of microbial cell factories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助gentleripper采纳,获得10
刚刚
英俊的铭应助Tianping采纳,获得10
1秒前
布丁发布了新的文献求助10
2秒前
部落发布了新的文献求助10
2秒前
Criminology34应助可爱的香岚采纳,获得10
3秒前
堇妤完成签到,获得积分20
3秒前
tum驳回了dew应助
3秒前
JamesPei应助ccm采纳,获得10
4秒前
青年才俊发布了新的文献求助10
4秒前
4秒前
糊涂的万发布了新的文献求助10
4秒前
桐桐应助优秀远侵采纳,获得10
5秒前
王亚平发布了新的文献求助10
5秒前
狮子卷卷完成签到,获得积分0
5秒前
甜兰儿完成签到,获得积分10
5秒前
怡然的月完成签到,获得积分10
6秒前
安静的难破完成签到,获得积分10
6秒前
7秒前
7秒前
javascript发布了新的文献求助10
7秒前
金光大元宝完成签到,获得积分10
8秒前
烟花应助niuya采纳,获得10
9秒前
小马甲应助自然含羞草采纳,获得10
9秒前
SciGPT应助11采纳,获得10
10秒前
与我常在完成签到,获得积分20
10秒前
糊涂的万完成签到,获得积分10
10秒前
11秒前
12秒前
丘比特应助鸢尾采纳,获得10
12秒前
晨曦完成签到,获得积分10
12秒前
cara完成签到,获得积分10
13秒前
yh发布了新的文献求助10
13秒前
Di喵喵完成签到,获得积分10
14秒前
monoklatt发布了新的文献求助10
14秒前
14秒前
深情安青应助Yue采纳,获得10
15秒前
15秒前
无辜凤凰发布了新的文献求助10
16秒前
YaoHui发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259760
求助须知:如何正确求助?哪些是违规求助? 4421264
关于积分的说明 13762582
捐赠科研通 4295161
什么是DOI,文献DOI怎么找? 2356757
邀请新用户注册赠送积分活动 1353139
关于科研通互助平台的介绍 1314315