Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis

枯草芽孢杆菌 产量(工程) 碳纤维 氧化还原 生物化学 化学 N-乙酰氨基葡萄糖 新陈代谢 生物 细菌 计算机科学 有机化学 材料科学 复合数 遗传学 冶金 算法
作者
Yang Gu,Xueqin Lv,Yanfeng Liu,Jianghua Li,Guocheng Du,Jian Chen,Rodrigo Ledesma‐Amaro,Long Liu
出处
期刊:Metabolic Engineering [Elsevier BV]
卷期号:51: 59-69 被引量:68
标识
DOI:10.1016/j.ymben.2018.10.002
摘要

Abstract One of the primary goals of microbial metabolic engineering is to achieve high titer, yield and productivity (TYP) of engineered strains. This TYP index requires optimized carbon flux toward desired molecule with minimal by-product formation. De novo redesign of central carbon and redox metabolism holds great promise to alleviate pathway bottleneck and improve carbon and energy utilization efficiency. The engineered strain, with the overexpression or deletion of multiple genes, typically can’t meet the TYP index, due to overflow of central carbon and redox metabolism that compromise the final yield, despite a high titer or productivity might be achieved. To solve this challenge, we reprogramed the central carbon and redox metabolism of Bacillus subtilis and achieved high TYP production of N-acetylglucosamine. Specifically, a “push–pull–promote” approach efficiently reduced the overflown acetyl-CoA flux and eliminated byproduct formation. Four synthetic NAD(P)-independent metabolic routes were introduced to rewire the redox metabolism to minimize energy loss. Implementation of these genetic strategies led us to obtain a B. subtilis strain with superior TYP index. GlcNAc titer in shake flask was increased from 6.6 g L−1 to 24.5 g L−1, the yield was improved from 0.115 to 0.468 g GlcNAc g−1 glucose, and the productivity was increased from 0.274 to 0.437 g L−1 h−1. These titer and yield are the highest levels ever reported and, the yield reached 98% of the theoretical pathway yield (0.478 g g−1 glucose). The synthetic redesign of carbon metabolism and redox metabolism represent a novel and general metabolic engineering strategy to improve the performance of microbial cell factories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
loski发布了新的文献求助10
1秒前
1秒前
1秒前
zzyuyu完成签到 ,获得积分10
2秒前
lemonkane发布了新的文献求助20
2秒前
坚强傲晴发布了新的文献求助10
3秒前
3秒前
xide发布了新的文献求助20
4秒前
why完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
Cathy发布了新的文献求助10
5秒前
CyrusSo524应助青云采纳,获得10
5秒前
所所应助gao采纳,获得10
7秒前
追寻的绮露完成签到,获得积分10
7秒前
小蘑菇应助我晕豆芽采纳,获得10
8秒前
8秒前
wanci应助俏皮的白柏采纳,获得10
8秒前
9秒前
yaoqi完成签到,获得积分10
10秒前
小猪发布了新的文献求助10
10秒前
Chen关注了科研通微信公众号
10秒前
WJ完成签到,获得积分10
10秒前
Sencetich发布了新的文献求助10
11秒前
我爱科研科研爱我完成签到,获得积分10
12秒前
Shaylee完成签到,获得积分10
12秒前
12秒前
研友_VZG7GZ应助坚强傲晴采纳,获得10
12秒前
14秒前
15秒前
Akim应助EddieDream采纳,获得10
15秒前
研友_ngkyGn应助山野采纳,获得10
15秒前
邸泽阳发布了新的文献求助10
16秒前
沉静丹寒完成签到,获得积分10
17秒前
啊哈哈哈完成签到 ,获得积分10
17秒前
xiu_ye完成签到,获得积分10
17秒前
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531183
关于积分的说明 11252671
捐赠科研通 3269809
什么是DOI,文献DOI怎么找? 1804780
邀请新用户注册赠送积分活动 881885
科研通“疑难数据库(出版商)”最低求助积分说明 809021