Ranked List Loss for Deep Metric Learning

超球体 计算机科学 边距(机器学习) 排名(信息检索) 公制(单位) 相似性(几何) 嵌入 成对比较 集合(抽象数据类型) 人工智能 趋同(经济学) 数据挖掘 理论计算机科学 机器学习 图像(数学) 经济 程序设计语言 经济增长 运营管理
作者
Xinshao Wang,Hua Yang,Elyor Kodirov,Guosheng Hu,Romain Garnier,Neil M. Robertson
标识
DOI:10.1109/cvpr.2019.00535
摘要

The objective of deep metric learning (DML) is to learn embeddings that can capture semantic similarity information among data points. Existing pairwise or tripletwise loss functions used in DML are known to suffer from slow convergence due to a large proportion of trivial pairs or triplets as the model improves. To improve this, rankingmotivated structured losses are proposed recently to incorporate multiple examples and exploit the structured information among them. They converge faster and achieve state-of-the-art performance. In this work, we present two limitations of existing ranking-motivated structured losses and propose a novel ranked list loss to solve both of them. First, given a query, only a fraction of data points is incorporated to build the similarity structure. Consequently, some useful examples are ignored and the structure is less informative. To address this, we propose to build a setbased similarity structure by exploiting all instances in the gallery. The samples are split into a positive set and a negative set. Our objective is to make the query closer to the positive set than to the negative set by a margin. Second, previous methods aim to pull positive pairs as close as possible in the embedding space. As a result, the intraclass data distribution might be dropped. In contrast, we propose to learn a hypersphere for each class in order to preserve the similarity structure inside it. Our extensive experiments show that the proposed method achieves state-of-the-art performance on three widely used benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC应助搞怪夏天采纳,获得30
刚刚
刚刚
烟花应助你是千堆雪采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得30
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Zwwwwc应助科研通管家采纳,获得10
2秒前
2秒前
小屁孩应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
2秒前
余九关注了科研通微信公众号
2秒前
2秒前
2秒前
phyllis发布了新的文献求助10
3秒前
3秒前
3秒前
duanhuiyuan应助自然的沛山采纳,获得10
5秒前
暖小阳发布了新的文献求助10
6秒前
6秒前
鎓离子完成签到,获得积分20
6秒前
7秒前
莴苣绝发布了新的文献求助10
7秒前
Y20发布了新的文献求助10
7秒前
Dtan发布了新的文献求助30
8秒前
8秒前
慕青应助工大搬砖战神采纳,获得10
8秒前
8秒前
9秒前
诚心的冰安完成签到,获得积分10
10秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434140
求助须知:如何正确求助?哪些是违规求助? 3031366
关于积分的说明 8941708
捐赠科研通 2719312
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689455
邀请新用户注册赠送积分活动 685580