Ranked List Loss for Deep Metric Learning

超球体 计算机科学 边距(机器学习) 排名(信息检索) 公制(单位) 相似性(几何) 嵌入 成对比较 集合(抽象数据类型) 人工智能 趋同(经济学) 数据挖掘 理论计算机科学 机器学习 图像(数学) 运营管理 经济 程序设计语言 经济增长
作者
Xinshao Wang,Hua Yang,Elyor Kodirov,Guosheng Hu,Romain Garnier,Neil M. Robertson
标识
DOI:10.1109/cvpr.2019.00535
摘要

The objective of deep metric learning (DML) is to learn embeddings that can capture semantic similarity information among data points. Existing pairwise or tripletwise loss functions used in DML are known to suffer from slow convergence due to a large proportion of trivial pairs or triplets as the model improves. To improve this, rankingmotivated structured losses are proposed recently to incorporate multiple examples and exploit the structured information among them. They converge faster and achieve state-of-the-art performance. In this work, we present two limitations of existing ranking-motivated structured losses and propose a novel ranked list loss to solve both of them. First, given a query, only a fraction of data points is incorporated to build the similarity structure. Consequently, some useful examples are ignored and the structure is less informative. To address this, we propose to build a setbased similarity structure by exploiting all instances in the gallery. The samples are split into a positive set and a negative set. Our objective is to make the query closer to the positive set than to the negative set by a margin. Second, previous methods aim to pull positive pairs as close as possible in the embedding space. As a result, the intraclass data distribution might be dropped. In contrast, we propose to learn a hypersphere for each class in order to preserve the similarity structure inside it. Our extensive experiments show that the proposed method achieves state-of-the-art performance on three widely used benchmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研人员发布了新的文献求助10
2秒前
来杯冰美式完成签到,获得积分10
3秒前
6秒前
酷炫的安雁完成签到 ,获得积分10
6秒前
达芙发布了新的文献求助10
8秒前
小李完成签到,获得积分10
13秒前
达芙完成签到,获得积分10
19秒前
21秒前
露露发布了新的文献求助10
26秒前
ww完成签到 ,获得积分10
30秒前
科研通AI6.1应助YanJinyu采纳,获得10
30秒前
谷贝贝完成签到,获得积分10
43秒前
XNt完成签到 ,获得积分10
50秒前
凑个数完成签到 ,获得积分10
54秒前
海皇星空完成签到 ,获得积分10
55秒前
liusoojoo完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
小小美发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
蓝天应助科研通管家采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
蓝天应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
月下荷花完成签到 ,获得积分10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
charint应助科研通管家采纳,获得10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851979
求助须知:如何正确求助?哪些是违规求助? 6275055
关于积分的说明 15627539
捐赠科研通 4967924
什么是DOI,文献DOI怎么找? 2678842
邀请新用户注册赠送积分活动 1623057
关于科研通互助平台的介绍 1579488