Unconjugated Side‐Chain Engineering Enables Small Molecular Acceptors for Highly Efficient Non‐Fullerene Organic Solar Cells: Insights into the Fine‐Tuning of Acceptor Properties and Micromorphology

材料科学 有机太阳能电池 富勒烯 接受者 纳米技术 侧链 分子工程 有机化学 聚合物 复合材料 凝聚态物理 化学 物理
作者
Tao Liu,Wei Gao,Yilin Wang,Yongzhen Yang,Ruijie Ma,Guangye Zhang,Cheng Zhong,Wei Ma,He Yan,Chuluo Yang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:29 (26) 被引量:103
标识
DOI:10.1002/adfm.201902155
摘要

Abstract 2D conjugated side‐chain engineering is an effective strategy that is widely utilized to construct benzodithiophene‐based polymers. Herein, an unconjugated side‐chain strategy to design fused‐benzodithiophene‐based non‐fullerene small molecule acceptors (SMAs) via vertical aromatic side‐chain engineering on the ladder‐type core is employed. Three SMAs named BTTIC‐Th, BTTIC‐TT, and BTTIC‐Ph with thiophene, thieno[3,2‐ b ]thiophene, and benzene, respectively, as side chains, are designed and synthesized. Three SMAs exhibit similar absorption ranges but different lowest unoccupied molecular orbital (LUMO) energy levels due to the different strength of the δ‐inductive effect between vertical aromatic side chains and their electron‐rich core. Organic solar cells based on PBDB‐T:BTTIC‐TT achieve a power conversion efficiency (PCE) of 13.44%, which is higher than the PCE of devices based on PBDB‐T:BTTIC‐Th (12.91%) and PBDB‐T:BTTIC‐Ph (9.14%). The difference in device performance is investigated by electrical and morphological characterizations. A large domain size and different types of π–π stacking are found in the bulk heterojunction layer of PBDB‐T:BTTIC‐Ph blend film, which are detrimental to exciton dissociation and charge transport. Overall, it is demonstrated that when designing unconjugated side chains, thieno[3,2‐ b ]thiophene is superior to thiophene and benzene through its dual roles of promoting the LUMO energy level and optimizing the morphology. These results shed light on the side‐chain engineering of high‐performance non‐fullerene SMAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Motorhead采纳,获得10
1秒前
1秒前
小古完成签到,获得积分10
1秒前
1秒前
1秒前
贺兰发布了新的文献求助10
2秒前
暴躁四叔应助zcy采纳,获得20
3秒前
yu关注了科研通微信公众号
4秒前
ZZZ发布了新的文献求助10
4秒前
4秒前
消消乐发布了新的文献求助10
4秒前
打打应助科研渣渣小草根采纳,获得10
4秒前
隐形曼青应助灵巧新瑶采纳,获得10
5秒前
等一树黄昏完成签到,获得积分10
5秒前
小蘑菇完成签到,获得积分10
5秒前
125发布了新的文献求助10
5秒前
小张发布了新的文献求助10
5秒前
jing发布了新的文献求助10
5秒前
反写炒蛋发布了新的文献求助10
6秒前
苹果烧鹅完成签到,获得积分10
6秒前
蜗牛完成签到,获得积分10
6秒前
6秒前
8秒前
chaserlife发布了新的文献求助10
8秒前
贺兰完成签到,获得积分10
8秒前
我觉得叫别动不动就电脑端完成签到,获得积分10
9秒前
善学以致用应助yangderder采纳,获得10
9秒前
KID完成签到,获得积分10
9秒前
10秒前
李健应助fdsdvczx采纳,获得10
10秒前
zhangxian0426发布了新的文献求助10
10秒前
段明威完成签到,获得积分10
11秒前
桐桐应助yyygc采纳,获得10
11秒前
科研通AI5应助满意的初南采纳,获得20
11秒前
想做只小博狗完成签到,获得积分10
11秒前
爆米花应助huk采纳,获得10
11秒前
所所应助细胞采纳,获得10
11秒前
12秒前
科研通AI5应助勤奋鑫鹏采纳,获得10
12秒前
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487862
求助须知:如何正确求助?哪些是违规求助? 3075753
关于积分的说明 9141978
捐赠科研通 2767984
什么是DOI,文献DOI怎么找? 1518876
邀请新用户注册赠送积分活动 703377
科研通“疑难数据库(出版商)”最低求助积分说明 701817