萤火虫算法
元启发式
和声搜索
Bat算法
粒子群优化
计算机科学
多群优化
数学优化
人体回声定位
算法
萤火虫协议
元优化
群体智能
进化算法
蚁群优化算法
元启发式
遗传算法
人工智能
并行元启发式
机器学习
数学
物理
动物
生物
声学
出处
期刊:Studies in computational intelligence
日期:2010-01-01
卷期号:: 65-74
被引量:2781
标识
DOI:10.1007/978-3-642-12538-6_6
摘要
Metaheuristic algorithms such as particle swarm optimization, firefly algorithm and harmony search are now becoming powerful methods for solving many tough optimization problems. In this paper, we propose a new metaheuristic method, the Bat Algorithm, based on the echolocation behaviour of bats. We also intend to combine the advantages of existing algorithms into the new bat algorithm. After a detailed formulation and explanation of its implementation, we will then compare the proposed algorithm with other existing algorithms, including genetic algorithms and particle swarm optimization. Simulations show that the proposed algorithm seems much superior to other algorithms, and further studies are also discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI