Evidence of Direct Link between Side Reaction and Capacity Fading in Lnmo

电解质 法拉第效率 容量损失 阳极 电化学 电池(电) 化学 塔菲尔方程 锂(药物) 化学工程 溶剂 材料科学 电极 热力学 物理化学 有机化学 医学 功率(物理) 物理 工程类 内分泌学
作者
Philippe Dumaz,Cécile Rossignol,Renaud Bouchet
出处
期刊:Meeting abstracts 卷期号:MA2018-02 (6): 436-436
标识
DOI:10.1149/ma2018-02/6/436
摘要

Since their market introduction in 1991, lithium (Li)-ion battery is the main solution to power electronic portable devices, and after almost three more decades of development this technology is embedded in modern electric and hybrid cars. However, its maturity leaves little gap to increase its energy density in the order of 250 Wh.kg-1. In order to increase their energy density, a promising solution is to use positive materials with high potential (up to 5V vs Li + / Li) [1] . The spinel LiNi 1/2 Mn 3/2 O 4 which owns a capacity of 147 mAh/g and a potential of 4.8 V vs Li + / Li, enables to reach a high energy density (at least 20% higher than the state of the art Li-ion technology), However, this operating potential is largely above the electrochemical stability range of conventional electrolytes based on carbonate solvents [2] . Cycling tests reveals a low coulombic efficiency induced by electrolyte oxidation and capacity loss induced by material degradation [3] . A simple model based on coulombic efficiency has been developed to quantify the solvent decomposition current. By comparing values obtained on thin film and composite electrode, we proved that the electrolyte oxidation mainly happen on the surface of the LNMO, with a main reaction that can simply be written as: Li + + EC + NMO → EC + + LiNMO where EC stand for a solvent electrolyte molecule and EC+ the product of the solvent oxidation. The rate of solvent decomposition is kinetically controlled by the charge-transfer, therefore a simple anodic Tafel expression has been used to model the current density due to this mechanism and has been compared to our model based on coulombic efficiency. Tests at different C rates indicate that the longer the electrode stays at high potential, the higher is the capacity fading, showing that the product of electrolyte oxidation seems to be involved into material degradation. In order to get a more deep insight into these parasitic reactions (oxidation of the electrolyte, active material degradation), cells were tested at different temperatures (10, 25 and 50°C). Especially, we have obtained that coulombic efficiency is strongly improved when the operation temperature is decreased, in full agreement with thermal activation of the electrolyte decomposition Inter estingly, we obtained a lower capacity fading which demonstrates the strong link between faradic efficiency (electrolyte oxidation) and material degradation. [1] Tarascon et al. Nature Mater. 2011 [2] Yi et al. J. Power Sources, 2016 [3] Pieczonka al. J. of Phys. Chemistry, 2013

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木棉完成签到,获得积分10
刚刚
哆啦A梦的小小王完成签到,获得积分10
1秒前
周源源完成签到,获得积分10
2秒前
NIUBEN完成签到,获得积分10
2秒前
2秒前
你好完成签到,获得积分10
3秒前
文文完成签到,获得积分10
3秒前
明亮冰枫完成签到,获得积分10
3秒前
wbhou完成签到 ,获得积分10
3秒前
4秒前
海儿的小宝贝完成签到,获得积分10
5秒前
zino完成签到,获得积分10
5秒前
不远完成签到,获得积分10
5秒前
5秒前
迷路毛豆完成签到,获得积分10
6秒前
6秒前
小明完成签到,获得积分10
6秒前
6秒前
euphoria发布了新的文献求助20
7秒前
shanshan完成签到,获得积分10
7秒前
hao发布了新的文献求助10
8秒前
飘逸天亦完成签到,获得积分10
9秒前
无花果应助阿修罗采纳,获得10
9秒前
SMIRTGIRL完成签到,获得积分10
10秒前
佛说慈悲完成签到,获得积分10
11秒前
11秒前
dms完成签到,获得积分10
11秒前
张张发布了新的文献求助10
11秒前
春日梦完成签到,获得积分10
12秒前
bkagyin应助Dazzein采纳,获得10
12秒前
李刚发布了新的文献求助10
13秒前
星辰大海应助S77采纳,获得10
13秒前
15秒前
15秒前
16秒前
ding应助科研通管家采纳,获得10
16秒前
16秒前
leoan完成签到,获得积分10
16秒前
乐乐完成签到 ,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567