亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evidence of Direct Link between Side Reaction and Capacity Fading in Lnmo

电解质 法拉第效率 容量损失 阳极 电化学 电池(电) 化学 塔菲尔方程 锂(药物) 化学工程 溶剂 材料科学 电极 热力学 物理化学 有机化学 医学 功率(物理) 物理 工程类 内分泌学
作者
Philippe Dumaz,Cécile Rossignol,Renaud Bouchet
出处
期刊:Meeting abstracts 卷期号:MA2018-02 (6): 436-436
标识
DOI:10.1149/ma2018-02/6/436
摘要

Since their market introduction in 1991, lithium (Li)-ion battery is the main solution to power electronic portable devices, and after almost three more decades of development this technology is embedded in modern electric and hybrid cars. However, its maturity leaves little gap to increase its energy density in the order of 250 Wh.kg-1. In order to increase their energy density, a promising solution is to use positive materials with high potential (up to 5V vs Li + / Li) [1] . The spinel LiNi 1/2 Mn 3/2 O 4 which owns a capacity of 147 mAh/g and a potential of 4.8 V vs Li + / Li, enables to reach a high energy density (at least 20% higher than the state of the art Li-ion technology), However, this operating potential is largely above the electrochemical stability range of conventional electrolytes based on carbonate solvents [2] . Cycling tests reveals a low coulombic efficiency induced by electrolyte oxidation and capacity loss induced by material degradation [3] . A simple model based on coulombic efficiency has been developed to quantify the solvent decomposition current. By comparing values obtained on thin film and composite electrode, we proved that the electrolyte oxidation mainly happen on the surface of the LNMO, with a main reaction that can simply be written as: Li + + EC + NMO → EC + + LiNMO where EC stand for a solvent electrolyte molecule and EC+ the product of the solvent oxidation. The rate of solvent decomposition is kinetically controlled by the charge-transfer, therefore a simple anodic Tafel expression has been used to model the current density due to this mechanism and has been compared to our model based on coulombic efficiency. Tests at different C rates indicate that the longer the electrode stays at high potential, the higher is the capacity fading, showing that the product of electrolyte oxidation seems to be involved into material degradation. In order to get a more deep insight into these parasitic reactions (oxidation of the electrolyte, active material degradation), cells were tested at different temperatures (10, 25 and 50°C). Especially, we have obtained that coulombic efficiency is strongly improved when the operation temperature is decreased, in full agreement with thermal activation of the electrolyte decomposition Inter estingly, we obtained a lower capacity fading which demonstrates the strong link between faradic efficiency (electrolyte oxidation) and material degradation. [1] Tarascon et al. Nature Mater. 2011 [2] Yi et al. J. Power Sources, 2016 [3] Pieczonka al. J. of Phys. Chemistry, 2013

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
13秒前
17秒前
jojo完成签到 ,获得积分10
29秒前
39秒前
渡己。发布了新的文献求助10
43秒前
47秒前
自由如风完成签到 ,获得积分10
1分钟前
FJXTY发布了新的文献求助10
1分钟前
1分钟前
大个应助Marciu33采纳,获得10
1分钟前
伊吹瓜皮发布了新的文献求助10
1分钟前
伊吹瓜皮完成签到,获得积分10
2分钟前
陆康完成签到 ,获得积分10
2分钟前
2分钟前
嘻嘻完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
PL发布了新的文献求助10
2分钟前
2分钟前
joysa完成签到,获得积分10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
奋斗人雄完成签到,获得积分0
3分钟前
GingerF应助kento采纳,获得50
3分钟前
乐乐应助科研通管家采纳,获得10
4分钟前
4分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
乐乐应助一辛采纳,获得10
4分钟前
4分钟前
冷静新烟发布了新的文献求助10
4分钟前
荷兰香猪完成签到,获得积分10
4分钟前
嘻嘻完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488508
求助须知:如何正确求助?哪些是违规求助? 4587361
关于积分的说明 14413642
捐赠科研通 4518680
什么是DOI,文献DOI怎么找? 2475981
邀请新用户注册赠送积分活动 1461489
关于科研通互助平台的介绍 1434384