异质结
材料科学
光催化
复合数
光电效应
热液循环
化学工程
载流子
分解水
纳米技术
光电子学
催化作用
复合材料
化学
生物化学
工程类
作者
Yujie Li,Zhaohua Yin,Guanrui Ji,Zhangqian Liang,Yanjun Xue,Yichen Guo,Jian Tian,Xinzhen Wang,Hongzhi Cui
标识
DOI:10.1016/j.apcatb.2019.01.051
摘要
Exposing the highly active facets and hybridizing the photocatalyst with appropriate cocatalysts with right placement have been regarded as a powerful approach to high performance photocatalysts. Herein, TiO2 nanosheets (NSs) are in situ grown on highly conductive Ti3C2 MXene and then MoS2 NSs are deposited on the (101) facets of TiO2 NSs with mainly exposed high-active (001) facets through a two-step hydrothermal method. And a unique 2D-2D-2D structure of Ti3C2@TiO2@MoS2 composite is achieved. With an optimized MoS2 loading amounts (15 wt%), the Ti3C2@TiO2@MoS2 composite shows a remarkable enhancement in the photocatalytic H2 evolution reaction compared with Ti3C2@TiO2 composite and TiO2 NS. It also shows good stability under the reaction condition. This arises from: (i) the in situ growth of TiO2 NSs construct strong interfacial contact with excellent electronic conductivity of Ti3C2, which facilitates the separation of carriers; (ii) the coexposed (101) and (001) facets can form a surface heterojunction within single TiO2 NS, which is beneficial for the transfer and separation of charge carriers; and (iii) the MoS2 NSs are deposited on the electrons-rich (101) facets of TiO2 NSs, which not only effectively reduces the charge carriers recombination rate by capturing photoelectrons, but also makes TiO2 NSs expose more highly active (001) facets to afford high-efficiency photogeneration of electron-hole pairs.
科研通智能强力驱动
Strongly Powered by AbleSci AI