Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs

材料科学 韧性 仿生学 纳米技术 仿生材料 增韧 复合材料
作者
Wei Huang,David Restrepo,Jae‐Young Jung,Frances Y. Su,Zengqian Liu,Robert O. Ritchie,Joanna McKittrick,Pablo Zavattieri,David Kisailus
出处
期刊:Advanced Materials [Wiley]
卷期号:31 (43) 被引量:473
标识
DOI:10.1002/adma.201901561
摘要

Biological materials found in Nature such as nacre and bone are well recognized as light-weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e., atomic- to macroscale) architectures and components. Herein, the toughening mechanisms of different organisms at multilength scales are identified and summarized: macromolecular deformation, chemical bond breakage, and biomineral crystal imperfections at the atomic scale; biopolymer fibril reconfiguration/deformation and biomineral nanoparticle/nanoplatelet/nanorod translation, and crack reorientation at the nanoscale; crack deflection and twisting by characteristic features such as tubules and lamellae at the microscale; and structure and morphology optimization at the macroscale. In addition, the actual loading conditions of the natural organisms are different, leading to energy dissipation occurring at different time scales. These toughening mechanisms are further illustrated by comparing the experimental results with computational modeling. Modeling methods at different length and time scales are reviewed. Examples of biomimetic designs that realize the multiscale toughening mechanisms in engineering materials are introduced. Indeed, there is still plenty of room mimicking the strong and tough biological designs at the multilength and time scale in Nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuqian发布了新的文献求助30
刚刚
刚刚
张无忌发布了新的文献求助30
1秒前
2秒前
wocao完成签到 ,获得积分10
5秒前
卡卡发布了新的文献求助10
5秒前
6秒前
aa完成签到,获得积分10
6秒前
昵称什么的不重要啦完成签到 ,获得积分10
6秒前
甜筒完成签到 ,获得积分10
6秒前
兴奋的问旋应助Li猪猪采纳,获得10
7秒前
钰c完成签到,获得积分10
8秒前
心灵美的白易完成签到,获得积分10
8秒前
勤劳冰烟完成签到,获得积分10
10秒前
雨雾完成签到,获得积分10
10秒前
斯文败类应助凶狠的乐巧采纳,获得10
10秒前
10秒前
生言生语完成签到,获得积分10
10秒前
alick发布了新的文献求助10
11秒前
钰c发布了新的文献求助10
11秒前
Maggie完成签到 ,获得积分10
11秒前
四月是一只爱猫的羊完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
打打应助嘟嘟请让一让采纳,获得10
13秒前
专一完成签到,获得积分10
13秒前
Lucas应助九川采纳,获得10
13秒前
yl关闭了yl文献求助
13秒前
14秒前
研友_VZG7GZ应助韩莎莎采纳,获得10
14秒前
14秒前
丘比特应助卡卡采纳,获得10
15秒前
15秒前
毛毛发布了新的文献求助10
15秒前
ljx完成签到 ,获得积分10
15秒前
活力山蝶应助小白采纳,获得10
18秒前
xg完成签到,获得积分10
18秒前
Zezezee发布了新的文献求助10
18秒前
笑点低可乐完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794