Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs

材料科学 韧性 仿生学 纳米技术 仿生材料 增韧 复合材料
作者
Wei Huang,David Restrepo,Jae‐Young Jung,Frances Y. Su,Zengqian Liu,Robert O. Ritchie,Joanna McKittrick,Pablo Zavattieri,David Kisailus
出处
期刊:Advanced Materials [Wiley]
卷期号:31 (43) 被引量:473
标识
DOI:10.1002/adma.201901561
摘要

Biological materials found in Nature such as nacre and bone are well recognized as light-weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e., atomic- to macroscale) architectures and components. Herein, the toughening mechanisms of different organisms at multilength scales are identified and summarized: macromolecular deformation, chemical bond breakage, and biomineral crystal imperfections at the atomic scale; biopolymer fibril reconfiguration/deformation and biomineral nanoparticle/nanoplatelet/nanorod translation, and crack reorientation at the nanoscale; crack deflection and twisting by characteristic features such as tubules and lamellae at the microscale; and structure and morphology optimization at the macroscale. In addition, the actual loading conditions of the natural organisms are different, leading to energy dissipation occurring at different time scales. These toughening mechanisms are further illustrated by comparing the experimental results with computational modeling. Modeling methods at different length and time scales are reviewed. Examples of biomimetic designs that realize the multiscale toughening mechanisms in engineering materials are introduced. Indeed, there is still plenty of room mimicking the strong and tough biological designs at the multilength and time scale in Nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
刚刚
iNk应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
iNk应助科研通管家采纳,获得10
刚刚
Alice完成签到,获得积分10
刚刚
Emma应助清风徐来采纳,获得10
1秒前
烟花应助优雅沛文采纳,获得10
1秒前
李永畅发布了新的文献求助10
1秒前
范雅寒完成签到 ,获得积分10
2秒前
汉堡包应助lixiaolu采纳,获得10
2秒前
2秒前
客念完成签到 ,获得积分10
2秒前
zenabia完成签到 ,获得积分10
2秒前
skycool发布了新的文献求助10
2秒前
老阎应助zhen采纳,获得30
3秒前
4秒前
cass完成签到,获得积分10
4秒前
5秒前
研友_Z33zkZ发布了新的文献求助10
5秒前
山炎鑫完成签到,获得积分10
5秒前
科研通AI5应助杨炀采纳,获得10
5秒前
6秒前
Hello应助璟晔采纳,获得10
6秒前
yar应助木木采纳,获得10
6秒前
恨安完成签到,获得积分0
6秒前
7秒前
柒七7完成签到,获得积分10
7秒前
笑开口完成签到 ,获得积分10
7秒前
伯赏秋白应助文件撤销了驳回
8秒前
调皮的蚂蚁完成签到,获得积分10
8秒前
8秒前
kd完成签到,获得积分10
9秒前
zzz发布了新的文献求助10
9秒前
简单代亦完成签到,获得积分20
9秒前
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969033
求助须知:如何正确求助?哪些是违规求助? 3513900
关于积分的说明 11170818
捐赠科研通 3249256
什么是DOI,文献DOI怎么找? 1794708
邀请新用户注册赠送积分活动 875326
科研通“疑难数据库(出版商)”最低求助积分说明 804759