Statistical Mechanics: Theory and Molecular Simulation

统计力学 计算机科学 统计物理学 物理 量子力学 计算力学 费曼图 数据科学 理论计算机科学 管理科学 工程类 有限元法 热力学
作者
Mark E. Tuckerman
出处
期刊:Oxford University Press eBooks [Oxford University Press]
被引量:1000
标识
DOI:10.1093/oso/9780198825562.001.0001
摘要

Abstract Complex problems that cross traditional disciplinary lines between physics, chemistry, biology, and materials science can be studied at an unprecedented level of detail using increasingly sophisticated theoretical methodology and high-speed computing platforms. The tools of statistical mechanics provide the bridge between the atomistic descriptions of these complex systems and the macroscopic observables accessible to experimental investigations and predictable in computer simulations. The aim of this book is to prepare burgeoning users and developers to become active researchers in the theoretical and computational molecular sciences by uniting, in one monograph, the theoretical underpinnings of equilibrium and time-dependent classical and quantum statistical mechanics with modern computational techniques used to put these concepts into practice to address real-world applications. The book contains detailed reviews of classical and quantum mechanics and in-depth discussions of the most commonly used statistical ensembles side by side with modern computational methods such as molecular dynamics, Monte Carlo, advanced configurational and trajectory sampling approaches, free-energy based rare-event sampling approaches, Feynman path integral techniques, linear response theory and time correlation functions, stochastic methods, critical phenomena, and an introduction to machine learning and its uses in statistical mechanics. Readers of this book will be provided, in a pedagogical manner, with a firm foundation in both the theory and practical implementation of statistical mechanical concepts, thus allowing them to approach application technology with an understanding of the underlying algorithms and to become, themselves, creators of new and powerful approaches for solving challenging research problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的书桃完成签到,获得积分10
1秒前
卡皮巴丘完成签到 ,获得积分10
1秒前
承乐应助菲菲采纳,获得10
1秒前
chuancheng发布了新的文献求助10
1秒前
1秒前
orixero应助丰富无血采纳,获得10
2秒前
活泼鬼神完成签到,获得积分10
2秒前
赘婿应助拼搏的败采纳,获得10
2秒前
风铃鸟完成签到,获得积分10
3秒前
3秒前
walker完成签到,获得积分10
4秒前
活泼鬼神发布了新的文献求助10
6秒前
passion完成签到,获得积分20
8秒前
丘比特应助Lauren采纳,获得10
9秒前
10秒前
11秒前
无极微光应助称心的绿柏采纳,获得20
11秒前
12秒前
迅速友容完成签到 ,获得积分10
12秒前
13秒前
13秒前
孙文霞完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
欣喜豌豆完成签到,获得积分10
16秒前
快乐科研发布了新的文献求助10
16秒前
田様应助拼搏的败采纳,获得10
16秒前
17秒前
17秒前
杨晓沛完成签到,获得积分10
18秒前
焱鑫完成签到,获得积分10
18秒前
WXH完成签到,获得积分10
19秒前
小巧莺发布了新的文献求助10
19秒前
19秒前
左手写情发布了新的文献求助30
20秒前
Voyager发布了新的文献求助10
20秒前
至秦完成签到,获得积分10
22秒前
考博圣体发布了新的文献求助10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605558
求助须知:如何正确求助?哪些是违规求助? 4690129
关于积分的说明 14862351
捐赠科研通 4701941
什么是DOI,文献DOI怎么找? 2542175
邀请新用户注册赠送积分活动 1507804
关于科研通互助平台的介绍 1472113