Statistical Mechanics: Theory and Molecular Simulation

统计力学 计算机科学 统计物理学 物理 量子力学 计算力学 费曼图 数据科学 理论计算机科学 管理科学 工程类 有限元法 热力学
作者
Mark E. Tuckerman
出处
期刊:Oxford University Press eBooks [Oxford University Press]
被引量:1000
标识
DOI:10.1093/oso/9780198825562.001.0001
摘要

Abstract Complex problems that cross traditional disciplinary lines between physics, chemistry, biology, and materials science can be studied at an unprecedented level of detail using increasingly sophisticated theoretical methodology and high-speed computing platforms. The tools of statistical mechanics provide the bridge between the atomistic descriptions of these complex systems and the macroscopic observables accessible to experimental investigations and predictable in computer simulations. The aim of this book is to prepare burgeoning users and developers to become active researchers in the theoretical and computational molecular sciences by uniting, in one monograph, the theoretical underpinnings of equilibrium and time-dependent classical and quantum statistical mechanics with modern computational techniques used to put these concepts into practice to address real-world applications. The book contains detailed reviews of classical and quantum mechanics and in-depth discussions of the most commonly used statistical ensembles side by side with modern computational methods such as molecular dynamics, Monte Carlo, advanced configurational and trajectory sampling approaches, free-energy based rare-event sampling approaches, Feynman path integral techniques, linear response theory and time correlation functions, stochastic methods, critical phenomena, and an introduction to machine learning and its uses in statistical mechanics. Readers of this book will be provided, in a pedagogical manner, with a firm foundation in both the theory and practical implementation of statistical mechanical concepts, thus allowing them to approach application technology with an understanding of the underlying algorithms and to become, themselves, creators of new and powerful approaches for solving challenging research problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aster发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
科研通AI6应助高玉峰采纳,获得10
2秒前
2秒前
3秒前
3秒前
超爱葡萄发布了新的文献求助10
3秒前
5秒前
赘婿应助西蜀小吏采纳,获得200
5秒前
依妍发布了新的文献求助10
5秒前
5秒前
mdjinij发布了新的文献求助10
5秒前
英俊的铭应助ljy采纳,获得10
6秒前
6秒前
6秒前
打打应助wwwanfg采纳,获得10
6秒前
科研通AI6应助容若采纳,获得10
6秒前
6秒前
szp发布了新的文献求助10
6秒前
钧瀚发布了新的文献求助10
6秒前
迷路代玉发布了新的文献求助10
7秒前
ddcc完成签到,获得积分20
8秒前
candy完成签到,获得积分10
8秒前
8秒前
黑苗完成签到,获得积分10
8秒前
8秒前
脑洞疼应助落后千凡采纳,获得10
8秒前
ganhykk发布了新的文献求助10
9秒前
朱孟研发布了新的文献求助10
9秒前
rachelli完成签到,获得积分20
9秒前
9秒前
9秒前
yiyiyi完成签到,获得积分10
9秒前
王王发布了新的文献求助10
10秒前
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614975
求助须知:如何正确求助?哪些是违规求助? 4699849
关于积分的说明 14905634
捐赠科研通 4740875
什么是DOI,文献DOI怎么找? 2547874
邀请新用户注册赠送积分活动 1511649
关于科研通互助平台的介绍 1473715