微塑料
傅里叶变换红外光谱
塑料污染
污染
环境化学
聚乙烯
化学
地表水
海水
水生生态系统
聚丙烯
环境科学
材料科学
海洋学
地质学
化学工程
生态学
环境工程
生物
复合材料
工程类
作者
Erik M. Hendrickson,Elizabeth C. Minor,K. M. Schreiner
标识
DOI:10.1021/acs.est.7b05829
摘要
While plastic pollution in marine and freshwater systems is an active area of research, there is not yet an in-depth understanding of the distributions, chemical compositions, and fates of plastics in aquatic environments. In this study, the magnitude, distribution, and common polymers of microplastic pollution in surface waters in western Lake Superior are determined. Analytical methodology, including estimates of ambient contamination during sample collection and processing, are described and employed. Microscopy, pyrolysis-gas chromatography/mass spectrometry (Pyr-GC/MS), and Fourier transform infrared spectroscopy (FTIR) were used to quantify and identify microplastic particles. In surface waters, fibers were the most frequently observed morphology, and, based upon PyGC/MS analysis, polyvinyl chloride was the most frequently observed polymer, followed by polypropylene and polyethylene. The most common polymer identified by FTIR was polyethylene. Despite the low human population in Lake Superior's watershed, microplastic particles (particularly fibers, fragments, and films) were identified in western-lake surface waters at levels comparable to average values reported in studies within Lake Michigan, the North Atlantic Ocean, and the South Pacific Ocean. This study provides insight into the magnitude of microplastic pollution in western Lake Superior, and describes in detail methodology to improve future microplastics studies in aquatic systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI