Anomaly detection for medical images based on a one-class classification

人工智能 自编码 模式识别(心理学) 计算机科学 判别式 异常检测 杠杆(统计) 班级(哲学) 医学影像学 二元分类 分类器(UML) 深度学习 上下文图像分类 图像(数学) 机器学习 支持向量机
作者
Wei Qi,Bibo Shi,Joseph Y. Lo,Lawrence Carin,Yinhao Ren,Rui Hou
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 被引量:55
标识
DOI:10.1117/12.2293408
摘要

Detecting an anomaly such as a malignant tumor or a nodule from medical images including mammogram, CT or PET images is still an ongoing research problem drawing a lot of attention with applications in medical diagnosis. A conventional way to address this is to learn a discriminative model using training datasets of negative and positive samples. The learned model can be used to classify a testing sample into a positive or negative class. However, in medical applications, the high unbalance between negative and positive samples poses a difficulty for learning algorithms, as they will be biased towards the majority group, i.e., the negative one. To address this imbalanced data issue as well as leverage the huge amount of negative samples, i.e., normal medical images, we propose to learn an unsupervised model to characterize the negative class. To make the learned model more flexible and extendable for medical images of different scales, we have designed an autoencoder based on a deep neural network to characterize the negative patches decomposed from large medical images. A testing image is decomposed into patches and then fed into the learned autoencoder to reconstruct these patches themselves. The reconstruction error of one patch is used to classify this patch into a binary class, i.e., a positive or a negative one, leading to a one-class classifier. The positive patches highlight the suspicious areas containing anomalies in a large medical image. The proposed method has been tested on InBreast dataset and achieves an AUC of 0.84. The main contribution of our work can be summarized as follows. 1) The proposed one-class learning requires only data from one class, i.e., the negative data; 2) The patch-based learning makes the proposed method scalable to images of different sizes and helps avoid the large scale problem for medical images; 3) The training of the proposed deep convolutional neural network (DCNN) based auto-encoder is fast and stable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流露发布了新的文献求助10
2秒前
情怀应助呆萌的绿蓉采纳,获得10
8秒前
情怀应助执着的安雁采纳,获得10
8秒前
9秒前
9秒前
微笑的天抒完成签到,获得积分10
10秒前
无期完成签到,获得积分10
10秒前
jige完成签到,获得积分10
11秒前
yyyyy语言发布了新的文献求助10
12秒前
大模型应助grape采纳,获得10
14秒前
16秒前
zimuxinxin完成签到,获得积分10
18秒前
流露完成签到,获得积分10
18秒前
19秒前
楠楠完成签到,获得积分10
19秒前
芋泥啵啵完成签到,获得积分10
19秒前
香蕉觅云应助科研民工采纳,获得10
20秒前
22秒前
SS完成签到,获得积分0
24秒前
美女发布了新的文献求助10
24秒前
Japrin完成签到,获得积分10
25秒前
沙溢发布了新的文献求助10
27秒前
grape完成签到,获得积分10
27秒前
27秒前
桃桃子发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
领导范儿应助沉默的幻枫采纳,获得10
30秒前
一小只柚子完成签到,获得积分10
31秒前
杜智诺应助屿2采纳,获得10
31秒前
33秒前
holly发布了新的文献求助10
34秒前
柚子完成签到 ,获得积分10
34秒前
35秒前
HJJHJH发布了新的文献求助10
37秒前
坚定毛衣完成签到,获得积分10
38秒前
wwwww完成签到 ,获得积分10
39秒前
39秒前
调皮语雪完成签到 ,获得积分10
40秒前
清晨花鹿完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736751
求助须知:如何正确求助?哪些是违规求助? 5368102
关于积分的说明 15333909
捐赠科研通 4880517
什么是DOI,文献DOI怎么找? 2622883
邀请新用户注册赠送积分活动 1571780
关于科研通互助平台的介绍 1528601