Anomaly detection for medical images based on a one-class classification

人工智能 自编码 模式识别(心理学) 计算机科学 判别式 异常检测 杠杆(统计) 班级(哲学) 医学影像学 二元分类 分类器(UML) 深度学习 上下文图像分类 图像(数学) 机器学习 支持向量机
作者
Wei Qi,Bibo Shi,Joseph Y. Lo,Lawrence Carin,Yinhao Ren,Rui Hou
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 被引量:55
标识
DOI:10.1117/12.2293408
摘要

Detecting an anomaly such as a malignant tumor or a nodule from medical images including mammogram, CT or PET images is still an ongoing research problem drawing a lot of attention with applications in medical diagnosis. A conventional way to address this is to learn a discriminative model using training datasets of negative and positive samples. The learned model can be used to classify a testing sample into a positive or negative class. However, in medical applications, the high unbalance between negative and positive samples poses a difficulty for learning algorithms, as they will be biased towards the majority group, i.e., the negative one. To address this imbalanced data issue as well as leverage the huge amount of negative samples, i.e., normal medical images, we propose to learn an unsupervised model to characterize the negative class. To make the learned model more flexible and extendable for medical images of different scales, we have designed an autoencoder based on a deep neural network to characterize the negative patches decomposed from large medical images. A testing image is decomposed into patches and then fed into the learned autoencoder to reconstruct these patches themselves. The reconstruction error of one patch is used to classify this patch into a binary class, i.e., a positive or a negative one, leading to a one-class classifier. The positive patches highlight the suspicious areas containing anomalies in a large medical image. The proposed method has been tested on InBreast dataset and achieves an AUC of 0.84. The main contribution of our work can be summarized as follows. 1) The proposed one-class learning requires only data from one class, i.e., the negative data; 2) The patch-based learning makes the proposed method scalable to images of different sizes and helps avoid the large scale problem for medical images; 3) The training of the proposed deep convolutional neural network (DCNN) based auto-encoder is fast and stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
劲秉应助知性的白猫采纳,获得20
刚刚
宗师算个瓢啊完成签到 ,获得积分10
刚刚
刚刚
IvanLIu完成签到 ,获得积分10
1秒前
1秒前
优美寻桃发布了新的文献求助10
1秒前
wry关闭了wry文献求助
2秒前
2秒前
hhhhhhhhhh完成签到 ,获得积分10
2秒前
冬云完成签到,获得积分10
2秒前
3秒前
3秒前
lcm完成签到,获得积分10
4秒前
dove发布了新的文献求助10
4秒前
4秒前
4秒前
科研通AI5应助酷酷语兰采纳,获得10
5秒前
zhaoa发布了新的文献求助10
5秒前
Ivychao发布了新的文献求助10
6秒前
冬云发布了新的文献求助10
8秒前
VDC发布了新的文献求助10
8秒前
犹豫酸奶完成签到,获得积分10
9秒前
小松鼠发布了新的文献求助10
9秒前
leekle完成签到,获得积分10
9秒前
10秒前
MZCCaiajie发布了新的文献求助10
10秒前
阿韦发布了新的文献求助10
13秒前
zhaoa完成签到,获得积分20
13秒前
tsntn完成签到,获得积分10
14秒前
keke发布了新的文献求助20
14秒前
Ivychao完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
17秒前
万能图书馆应助zhaoa采纳,获得10
17秒前
18秒前
东方天奇发布了新的文献求助10
18秒前
18秒前
韩soso完成签到,获得积分10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748570
求助须知:如何正确求助?哪些是违规求助? 3291631
关于积分的说明 10073772
捐赠科研通 3007459
什么是DOI,文献DOI怎么找? 1651612
邀请新用户注册赠送积分活动 786566
科研通“疑难数据库(出版商)”最低求助积分说明 751765