Anomaly detection for medical images based on a one-class classification

人工智能 自编码 模式识别(心理学) 计算机科学 判别式 异常检测 杠杆(统计) 班级(哲学) 医学影像学 二元分类 分类器(UML) 深度学习 上下文图像分类 图像(数学) 机器学习 支持向量机
作者
Wei Qi,Bibo Shi,Joseph Y. Lo,Lawrence Carin,Yinhao Ren,Rui Hou
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 被引量:55
标识
DOI:10.1117/12.2293408
摘要

Detecting an anomaly such as a malignant tumor or a nodule from medical images including mammogram, CT or PET images is still an ongoing research problem drawing a lot of attention with applications in medical diagnosis. A conventional way to address this is to learn a discriminative model using training datasets of negative and positive samples. The learned model can be used to classify a testing sample into a positive or negative class. However, in medical applications, the high unbalance between negative and positive samples poses a difficulty for learning algorithms, as they will be biased towards the majority group, i.e., the negative one. To address this imbalanced data issue as well as leverage the huge amount of negative samples, i.e., normal medical images, we propose to learn an unsupervised model to characterize the negative class. To make the learned model more flexible and extendable for medical images of different scales, we have designed an autoencoder based on a deep neural network to characterize the negative patches decomposed from large medical images. A testing image is decomposed into patches and then fed into the learned autoencoder to reconstruct these patches themselves. The reconstruction error of one patch is used to classify this patch into a binary class, i.e., a positive or a negative one, leading to a one-class classifier. The positive patches highlight the suspicious areas containing anomalies in a large medical image. The proposed method has been tested on InBreast dataset and achieves an AUC of 0.84. The main contribution of our work can be summarized as follows. 1) The proposed one-class learning requires only data from one class, i.e., the negative data; 2) The patch-based learning makes the proposed method scalable to images of different sizes and helps avoid the large scale problem for medical images; 3) The training of the proposed deep convolutional neural network (DCNN) based auto-encoder is fast and stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西南楚留香完成签到,获得积分10
1秒前
Newky发布了新的文献求助10
2秒前
4秒前
4秒前
王路飞完成签到,获得积分10
5秒前
8秒前
mmm发布了新的文献求助10
9秒前
boltos发布了新的文献求助10
11秒前
ASA完成签到,获得积分10
11秒前
abin发布了新的文献求助10
12秒前
Newky完成签到,获得积分10
12秒前
卿君完成签到,获得积分10
16秒前
16秒前
Jasper应助乔佳怡采纳,获得10
18秒前
Akim应助hwezhu采纳,获得10
18秒前
19秒前
alpv完成签到,获得积分10
19秒前
20秒前
南冥发布了新的文献求助10
23秒前
23秒前
24秒前
迷路的绿藻头完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
哈哈完成签到,获得积分10
25秒前
A阿澍发布了新的文献求助10
26秒前
abin完成签到,获得积分10
26秒前
28秒前
28秒前
28秒前
hwezhu发布了新的文献求助10
29秒前
31秒前
jyy应助科研通管家采纳,获得10
33秒前
czh应助科研通管家采纳,获得20
33秒前
烟花应助科研通管家采纳,获得10
34秒前
充电宝应助科研通管家采纳,获得10
34秒前
小马甲应助科研通管家采纳,获得10
34秒前
34秒前
今后应助科研通管家采纳,获得10
34秒前
34秒前
无花果应助科研通管家采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136