Anomaly detection for medical images based on a one-class classification

人工智能 自编码 模式识别(心理学) 计算机科学 判别式 异常检测 杠杆(统计) 班级(哲学) 医学影像学 二元分类 分类器(UML) 深度学习 上下文图像分类 图像(数学) 机器学习 支持向量机
作者
Wei Qi,Bibo Shi,Joseph Y. Lo,Lawrence Carin,Yinhao Ren,Rui Hou
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 被引量:55
标识
DOI:10.1117/12.2293408
摘要

Detecting an anomaly such as a malignant tumor or a nodule from medical images including mammogram, CT or PET images is still an ongoing research problem drawing a lot of attention with applications in medical diagnosis. A conventional way to address this is to learn a discriminative model using training datasets of negative and positive samples. The learned model can be used to classify a testing sample into a positive or negative class. However, in medical applications, the high unbalance between negative and positive samples poses a difficulty for learning algorithms, as they will be biased towards the majority group, i.e., the negative one. To address this imbalanced data issue as well as leverage the huge amount of negative samples, i.e., normal medical images, we propose to learn an unsupervised model to characterize the negative class. To make the learned model more flexible and extendable for medical images of different scales, we have designed an autoencoder based on a deep neural network to characterize the negative patches decomposed from large medical images. A testing image is decomposed into patches and then fed into the learned autoencoder to reconstruct these patches themselves. The reconstruction error of one patch is used to classify this patch into a binary class, i.e., a positive or a negative one, leading to a one-class classifier. The positive patches highlight the suspicious areas containing anomalies in a large medical image. The proposed method has been tested on InBreast dataset and achieves an AUC of 0.84. The main contribution of our work can be summarized as follows. 1) The proposed one-class learning requires only data from one class, i.e., the negative data; 2) The patch-based learning makes the proposed method scalable to images of different sizes and helps avoid the large scale problem for medical images; 3) The training of the proposed deep convolutional neural network (DCNN) based auto-encoder is fast and stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大黄日记本完成签到,获得积分20
1秒前
2秒前
搜集达人应助盛yyyy采纳,获得10
2秒前
guilin发布了新的文献求助30
3秒前
Shirly发布了新的文献求助10
4秒前
可爱藏今关注了科研通微信公众号
6秒前
张张张哈哈哈完成签到,获得积分10
6秒前
阔达的扬完成签到,获得积分10
6秒前
7秒前
老迟到的问安完成签到 ,获得积分10
8秒前
Der.发布了新的文献求助10
9秒前
10秒前
YifanWang应助一个小胖子采纳,获得10
10秒前
再见梧桐发布了新的文献求助30
11秒前
12秒前
juice完成签到 ,获得积分10
14秒前
大力日记本完成签到,获得积分20
17秒前
18秒前
大个应助fff1采纳,获得10
18秒前
云飞扬完成签到,获得积分10
19秒前
sometimesawake完成签到,获得积分10
20秒前
20秒前
可爱藏今发布了新的文献求助10
22秒前
yw完成签到 ,获得积分10
23秒前
白色蒲公英完成签到,获得积分10
24秒前
kiwi发布了新的文献求助30
24秒前
txyouniverse完成签到 ,获得积分10
25秒前
思源应助Dd采纳,获得10
26秒前
Zhijiuhenpi完成签到,获得积分20
26秒前
深情秋凌发布了新的文献求助20
27秒前
YifanWang应助一个小胖子采纳,获得10
27秒前
我是老大应助我我我采纳,获得10
28秒前
安详的曲奇完成签到,获得积分10
29秒前
29秒前
酷波er应助Zhijiuhenpi采纳,获得30
30秒前
33秒前
SciGPT应助航_123采纳,获得10
34秒前
盛yyyy完成签到,获得积分10
34秒前
领导范儿应助Shirly采纳,获得10
34秒前
NexusExplorer应助letian采纳,获得10
35秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266206
求助须知:如何正确求助?哪些是违规求助? 2906003
关于积分的说明 8336431
捐赠科研通 2576383
什么是DOI,文献DOI怎么找? 1400493
科研通“疑难数据库(出版商)”最低求助积分说明 654786
邀请新用户注册赠送积分活动 633661