Anomaly detection for medical images based on a one-class classification

人工智能 自编码 模式识别(心理学) 计算机科学 判别式 异常检测 杠杆(统计) 班级(哲学) 医学影像学 二元分类 分类器(UML) 深度学习 上下文图像分类 图像(数学) 机器学习 支持向量机
作者
Wei Qi,Bibo Shi,Joseph Y. Lo,Lawrence Carin,Yinhao Ren,Rui Hou
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 被引量:55
标识
DOI:10.1117/12.2293408
摘要

Detecting an anomaly such as a malignant tumor or a nodule from medical images including mammogram, CT or PET images is still an ongoing research problem drawing a lot of attention with applications in medical diagnosis. A conventional way to address this is to learn a discriminative model using training datasets of negative and positive samples. The learned model can be used to classify a testing sample into a positive or negative class. However, in medical applications, the high unbalance between negative and positive samples poses a difficulty for learning algorithms, as they will be biased towards the majority group, i.e., the negative one. To address this imbalanced data issue as well as leverage the huge amount of negative samples, i.e., normal medical images, we propose to learn an unsupervised model to characterize the negative class. To make the learned model more flexible and extendable for medical images of different scales, we have designed an autoencoder based on a deep neural network to characterize the negative patches decomposed from large medical images. A testing image is decomposed into patches and then fed into the learned autoencoder to reconstruct these patches themselves. The reconstruction error of one patch is used to classify this patch into a binary class, i.e., a positive or a negative one, leading to a one-class classifier. The positive patches highlight the suspicious areas containing anomalies in a large medical image. The proposed method has been tested on InBreast dataset and achieves an AUC of 0.84. The main contribution of our work can be summarized as follows. 1) The proposed one-class learning requires only data from one class, i.e., the negative data; 2) The patch-based learning makes the proposed method scalable to images of different sizes and helps avoid the large scale problem for medical images; 3) The training of the proposed deep convolutional neural network (DCNN) based auto-encoder is fast and stable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
尤寄风发布了新的文献求助10
4秒前
万能图书馆应助欣阳1021采纳,获得10
4秒前
daidai发布了新的文献求助10
6秒前
LU41完成签到,获得积分10
7秒前
欢喜柚子发布了新的文献求助10
8秒前
杠赛来发布了新的文献求助30
8秒前
8秒前
的服务费完成签到,获得积分10
10秒前
12秒前
12秒前
淡定的鹏飞完成签到,获得积分10
13秒前
chengxue完成签到,获得积分10
14秒前
火星上映阳完成签到,获得积分10
15秒前
华仔应助michael采纳,获得10
15秒前
16秒前
123456完成签到,获得积分10
19秒前
无私从雪完成签到,获得积分10
19秒前
Adonis完成签到,获得积分10
21秒前
李健的小迷弟应助FANG采纳,获得10
23秒前
lvzhechen完成签到,获得积分10
24秒前
排骨年糕发布了新的文献求助10
24秒前
英俊的铭应助Pepsi采纳,获得10
27秒前
27秒前
少年完成签到,获得积分10
28秒前
30秒前
michael发布了新的文献求助10
30秒前
小蘑菇应助daisyyy采纳,获得10
32秒前
jonathan发布了新的文献求助10
35秒前
123456发布了新的文献求助20
36秒前
36秒前
37秒前
DC-CIK军团完成签到 ,获得积分10
37秒前
40秒前
魁梧的灵安完成签到,获得积分10
41秒前
Pepsi发布了新的文献求助10
43秒前
善学以致用应助不安代桃采纳,获得10
43秒前
华杰发布了新的文献求助100
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565710
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692596
捐赠科研通 4592710
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492116
关于科研通互助平台的介绍 1463316