已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Anomaly detection for medical images based on a one-class classification

人工智能 自编码 模式识别(心理学) 计算机科学 判别式 异常检测 杠杆(统计) 班级(哲学) 医学影像学 二元分类 分类器(UML) 深度学习 上下文图像分类 图像(数学) 机器学习 支持向量机
作者
Wei Qi,Bibo Shi,Joseph Y. Lo,Lawrence Carin,Yinhao Ren,Rui Hou
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 被引量:55
标识
DOI:10.1117/12.2293408
摘要

Detecting an anomaly such as a malignant tumor or a nodule from medical images including mammogram, CT or PET images is still an ongoing research problem drawing a lot of attention with applications in medical diagnosis. A conventional way to address this is to learn a discriminative model using training datasets of negative and positive samples. The learned model can be used to classify a testing sample into a positive or negative class. However, in medical applications, the high unbalance between negative and positive samples poses a difficulty for learning algorithms, as they will be biased towards the majority group, i.e., the negative one. To address this imbalanced data issue as well as leverage the huge amount of negative samples, i.e., normal medical images, we propose to learn an unsupervised model to characterize the negative class. To make the learned model more flexible and extendable for medical images of different scales, we have designed an autoencoder based on a deep neural network to characterize the negative patches decomposed from large medical images. A testing image is decomposed into patches and then fed into the learned autoencoder to reconstruct these patches themselves. The reconstruction error of one patch is used to classify this patch into a binary class, i.e., a positive or a negative one, leading to a one-class classifier. The positive patches highlight the suspicious areas containing anomalies in a large medical image. The proposed method has been tested on InBreast dataset and achieves an AUC of 0.84. The main contribution of our work can be summarized as follows. 1) The proposed one-class learning requires only data from one class, i.e., the negative data; 2) The patch-based learning makes the proposed method scalable to images of different sizes and helps avoid the large scale problem for medical images; 3) The training of the proposed deep convolutional neural network (DCNN) based auto-encoder is fast and stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢雄峰完成签到,获得积分10
刚刚
grumpysquirel完成签到,获得积分10
1秒前
小fei完成签到,获得积分10
1秒前
Jiayi完成签到 ,获得积分10
2秒前
blush完成签到 ,获得积分10
3秒前
zbr完成签到 ,获得积分10
3秒前
4秒前
明天毕业完成签到,获得积分10
4秒前
麻辣薯条完成签到,获得积分10
5秒前
想人陪的飞薇完成签到 ,获得积分10
5秒前
Worenxian完成签到 ,获得积分10
5秒前
Rjy完成签到 ,获得积分10
6秒前
小小鱼完成签到 ,获得积分10
6秒前
彼岸完成签到 ,获得积分10
7秒前
pojian完成签到,获得积分10
7秒前
hhh完成签到,获得积分10
7秒前
yy完成签到 ,获得积分10
7秒前
张环完成签到,获得积分10
8秒前
Bingtao_Lian完成签到 ,获得积分10
8秒前
小凯完成签到 ,获得积分10
8秒前
傻瓜完成签到 ,获得积分10
8秒前
时尚身影完成签到,获得积分10
8秒前
01259完成签到 ,获得积分10
8秒前
callmefather完成签到,获得积分10
9秒前
9秒前
big ben完成签到 ,获得积分0
9秒前
iShine完成签到 ,获得积分10
9秒前
务实觅松完成签到 ,获得积分10
10秒前
lynn完成签到 ,获得积分10
10秒前
不可以哦完成签到 ,获得积分10
10秒前
vippp完成签到 ,获得积分10
10秒前
Yxs完成签到,获得积分10
10秒前
11秒前
屠夫9441完成签到,获得积分10
11秒前
yuqinghui98完成签到 ,获得积分10
12秒前
鲁路修完成签到,获得积分10
12秒前
9464完成签到 ,获得积分10
12秒前
流苏完成签到,获得积分10
12秒前
坐雨赏花完成签到 ,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090153
求助须知:如何正确求助?哪些是违规求助? 4304761
关于积分的说明 13414823
捐赠科研通 4130452
什么是DOI,文献DOI怎么找? 2262325
邀请新用户注册赠送积分活动 1266229
关于科研通互助平台的介绍 1200912

今日热心研友

tuanheqi
240
yann
60
浮游
5
Takahara2000
1 20
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10