Dropout Prediction in MOOCs: Using Deep Learning for Personalized Intervention

辍学(神经网络) 学习分析 计算机科学 损耗 机器学习 人工智能 干预(咨询) 个性化 深度学习 比例(比率) 风险学生 分析 数据科学 数学教育 心理学 精神科 物理 万维网 牙科 医学 量子力学
作者
Wanli Xing,Dongping Du
出处
期刊:Journal of Educational Computing Research [SAGE]
卷期号:57 (3): 547-570 被引量:229
标识
DOI:10.1177/0735633118757015
摘要

Massive open online courses (MOOCs) show great potential to transform traditional education through the Internet. However, the high attrition rates in MOOCs have often been cited as a scale-efficacy tradeoff. Traditional educational approaches are usually unable to identify such large-scale number of at-risk students in danger of dropping out in time to support effective intervention design. While building dropout prediction models using learning analytics are promising in informing intervention design for these at-risk students, results of the current prediction model construction methods do not enable personalized intervention for these students. In this study, we take an initial step to optimize the dropout prediction model performance toward intervention personalization for at-risk students in MOOCs. Specifically, based on a temporal prediction mechanism, this study proposes to use the deep learning algorithm to construct the dropout prediction model and further produce the predicted individual student dropout probability. By taking advantage of the power of deep learning, this approach not only constructs more accurate dropout prediction models compared with baseline algorithms but also comes up with an approach to personalize and prioritize intervention for at-risk students in MOOCs through using individual drop out probabilities. The findings from this study and implications are then discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助jiangcai采纳,获得10
1秒前
1秒前
1秒前
liuguangda完成签到,获得积分20
2秒前
zho关闭了zho文献求助
2秒前
WTC完成签到 ,获得积分10
2秒前
桐桐应助采桑子采纳,获得10
2秒前
Chridy驳回了z3Q应助
2秒前
科研通AI2S应助腼腆的乐安采纳,获得10
3秒前
4秒前
Owen应助宁学者采纳,获得10
4秒前
5秒前
5秒前
rita发布了新的文献求助10
5秒前
希望天下0贩的0应助lakelili采纳,获得10
6秒前
糊涂的芷天完成签到,获得积分10
6秒前
虚幻向秋发布了新的文献求助10
6秒前
7秒前
7秒前
香蕉觅云应助半仙采纳,获得10
8秒前
8秒前
11秒前
11秒前
烂烂发布了新的文献求助10
11秒前
LHL完成签到,获得积分10
11秒前
111111发布了新的文献求助10
12秒前
12秒前
CYAA发布了新的文献求助10
14秒前
guojin发布了新的文献求助10
14秒前
小蘑菇应助lapchin采纳,获得10
14秒前
36456657应助在风之笑采纳,获得10
14秒前
初四发布了新的文献求助10
15秒前
七七完成签到,获得积分10
15秒前
16秒前
duoduo发布了新的文献求助10
18秒前
jiangcai发布了新的文献求助10
19秒前
食杂砸发布了新的文献求助10
20秒前
20秒前
luyuhao3应助hhhhhhhh采纳,获得10
21秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305566
求助须知:如何正确求助?哪些是违规求助? 2939312
关于积分的说明 8492936
捐赠科研通 2613754
什么是DOI,文献DOI怎么找? 1427569
科研通“疑难数据库(出版商)”最低求助积分说明 663115
邀请新用户注册赠送积分活动 647883