压缩永久变形
材料科学
天然橡胶
印章(徽章)
玻璃化转变
差示扫描量热法
复合材料
弹性体
热的
动态力学分析
法律工程学
热力学
聚合物
工程类
艺术
视觉艺术
物理
摘要
Rubber is widely used as sealing material in various applications. In many fields the function of seal materials at low temperatures is necessary. Therefore, the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance.
It is known that the material properties of rubbers are strongly temperature dependent. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling, due to the glass transition the material changes from rubber-like entropy-elastic behaviour to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Hence, rubbers are normally used above their glass transition. But as the minimum working temperature limit of elastomers cannot be defined globally and precisely, the lower operation temperature limit of rubber seals should be determined in dependence of the application conditions and the most relevant material properties.
In this paper, wesummarize results of our temperature dependent investigation of seal material properties by classical thermal analysis as Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA), combined with measurements of standardized tests as compression set and the seal performance determined in component tests. To reduce the test time of compression set tests a faster technique was developed and applied.
To study the influence of dynamic events on the seal performance and to enhance the understanding of occurring seal failure, a setup for a fast partial seal release was designed.
科研通智能强力驱动
Strongly Powered by AbleSci AI