兴奋剂
掺杂剂
材料科学
费米能级
分子
分析化学(期刊)
光电发射光谱学
X射线光电子能谱
紫外光电子能谱
物理
化学
光电子学
核磁共振
有机化学
电子
量子力学
作者
Max L. Tietze,Lorenzo Burtone,Moritz Riede,Björn Lüssem,Karl Leo
标识
DOI:10.1103/physrevb.86.035320
摘要
We study the mechanism of molecular doping of the organic small molecule N,N,N${}^{\ensuremath{'}}$,N${}^{\ensuremath{'}}$-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD) doped with the fluorinated fullerene ${\mathrm{C}}_{60}{\mathrm{F}}_{36}$ or the acceptor molecule 2,2${}^{\ensuremath{'}}$-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ). Varying the doping concentration, photoemission spectroscopy measurements show a comparable Fermi level shift for both dopants. The doping efficiency, defined as the ratio of free charge carriers (holes) to acceptors, is estimated from the depletion layer thickness in metal/intrinsic/$p$-doped structures. For low concentrations, we observe rather high doping efficiencies of up to 36$%$ for ${\mathrm{C}}_{60}{\mathrm{F}}_{36}$, whereas for both dopants the doping efficiency strongly decreases with increasing doping concentration down to less than 10$%$. By numerically solving the charge neutrality equation using a classical semiconductor physics approach and comparing the results to the ultraviolet photoelectron spectroscopy data, we show that for very low concentrations doping is hindered by deep intragap states. In particular, the calculations can statistically explain the strong decrease of the doping efficiency for high doping concentrations.
科研通智能强力驱动
Strongly Powered by AbleSci AI