已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Extraction of Construction Quality Requirements from Textual Specifications via Natural Language Processing

计算机科学 解析 判决 卷积神经网络 过程(计算) 人工智能 文字2vec 自然语言处理 质量(理念) 组分(热力学) 质量保证 程序设计语言 工程类 哲学 运营管理 物理 外部质量评估 嵌入 认识论 热力学
作者
JungHo Jeon,Xin Xu,Yuxi Zhang,Yang Liu,Hubo Cai
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2675 (9): 222-237 被引量:10
标识
DOI:10.1177/03611981211001385
摘要

Construction inspection is an essential component of the quality assurance programs of state transportation agencies (STAs), and the guidelines for this process reside in lengthy textual specifications. In the current practice, engineers and inspectors must manually go through these documents to plan, conduct, and document their inspections, which is time-consuming, very subjective, inconsistent, and prone to error. A promising alternative to this manual process is the application of natural language processing (NLP) techniques (e.g., text parsing, sentence classification, and syntactic analysis) to automatically extract construction inspection requirements from textual documents and present them as straightforward check questions. This paper introduces an NLP-based method that: 1) extracts individual sentences from the construction specification; 2) preprocesses the resulting sentences; 3) applies Word2Vec and GloVe algorithms to extract vector features; 4) uses a convolutional neural network (CNN) and recurrent neural network to classify sentences; and 5) converts the requirement sentences into check questions via syntactic analysis. The overall methodology was assessed using the Indiana Department of Transportation (DOT) specification as a test case. Our results revealed that the CNN + GloVe combination led to the highest accuracy, at 91.9%, and the lowest loss, at 11.7%. To further validate its use across STAs nationwide, we applied it to the construction specification of the South Carolina DOT as a test case, and our average accuracy was 92.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小陆发布了新的文献求助20
1秒前
天真的不凡完成签到 ,获得积分10
2秒前
8秒前
慕青应助indigo采纳,获得10
11秒前
11秒前
大个应助科研通管家采纳,获得10
12秒前
KUZZZ应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
yx_cheng应助科研通管家采纳,获得10
12秒前
Rondab应助科研通管家采纳,获得30
12秒前
12秒前
徐小发布了新的文献求助10
13秒前
宝玉发布了新的文献求助10
16秒前
hhhh完成签到 ,获得积分10
18秒前
19秒前
gstaihn完成签到,获得积分10
20秒前
852应助lvsehx采纳,获得10
20秒前
indigo发布了新的文献求助10
22秒前
22秒前
Owen应助徐小采纳,获得10
22秒前
岂曰无衣完成签到 ,获得积分10
23秒前
小屋完成签到,获得积分10
31秒前
35秒前
35秒前
QSQ完成签到,获得积分10
35秒前
在水一方应助拿铁采纳,获得10
37秒前
38秒前
纯真的靖琪完成签到 ,获得积分10
39秒前
英姑应助white采纳,获得10
39秒前
博修发布了新的文献求助30
39秒前
40秒前
FIN应助博修采纳,获得30
43秒前
swx完成签到,获得积分10
48秒前
义气的跳跳糖完成签到,获得积分10
48秒前
万能图书馆应助导师老八采纳,获得10
48秒前
hhhxmx发布了新的文献求助10
49秒前
可爱的函函应助hhh采纳,获得10
50秒前
50秒前
CAOHOU应助wwho_O采纳,获得10
51秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963020
求助须知:如何正确求助?哪些是违规求助? 3508944
关于积分的说明 11144216
捐赠科研通 3241909
什么是DOI,文献DOI怎么找? 1791705
邀请新用户注册赠送积分活动 873115
科研通“疑难数据库(出版商)”最低求助积分说明 803603