Extraction of Construction Quality Requirements from Textual Specifications via Natural Language Processing

计算机科学 解析 判决 卷积神经网络 过程(计算) 人工智能 文字2vec 自然语言处理 质量(理念) 组分(热力学) 质量保证 程序设计语言 工程类 哲学 物理 认识论 热力学 嵌入 外部质量评估 运营管理
作者
JungHo Jeon,Xin Xu,Yuxi Zhang,Yang Liu,Hubo Cai
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2675 (9): 222-237 被引量:10
标识
DOI:10.1177/03611981211001385
摘要

Construction inspection is an essential component of the quality assurance programs of state transportation agencies (STAs), and the guidelines for this process reside in lengthy textual specifications. In the current practice, engineers and inspectors must manually go through these documents to plan, conduct, and document their inspections, which is time-consuming, very subjective, inconsistent, and prone to error. A promising alternative to this manual process is the application of natural language processing (NLP) techniques (e.g., text parsing, sentence classification, and syntactic analysis) to automatically extract construction inspection requirements from textual documents and present them as straightforward check questions. This paper introduces an NLP-based method that: 1) extracts individual sentences from the construction specification; 2) preprocesses the resulting sentences; 3) applies Word2Vec and GloVe algorithms to extract vector features; 4) uses a convolutional neural network (CNN) and recurrent neural network to classify sentences; and 5) converts the requirement sentences into check questions via syntactic analysis. The overall methodology was assessed using the Indiana Department of Transportation (DOT) specification as a test case. Our results revealed that the CNN + GloVe combination led to the highest accuracy, at 91.9%, and the lowest loss, at 11.7%. To further validate its use across STAs nationwide, we applied it to the construction specification of the South Carolina DOT as a test case, and our average accuracy was 92.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖南莲发布了新的文献求助10
1秒前
1秒前
linda完成签到,获得积分10
2秒前
2秒前
2秒前
希望天下0贩的0应助浊轶采纳,获得10
3秒前
不弱小妖完成签到,获得积分10
3秒前
谢慧蕴完成签到,获得积分10
4秒前
科研糕手发布了新的文献求助30
4秒前
小南完成签到,获得积分10
5秒前
汉堡包应助龙傲天采纳,获得10
5秒前
5秒前
6秒前
6秒前
Olivia完成签到 ,获得积分10
6秒前
8秒前
一叶知秋完成签到,获得积分10
8秒前
10秒前
传奇3应助乐观的幼珊采纳,获得10
10秒前
小巧凝丹发布了新的文献求助10
10秒前
张正友发布了新的文献求助10
10秒前
11秒前
12秒前
纷扬发布了新的文献求助10
14秒前
14秒前
16秒前
纷扬完成签到,获得积分10
19秒前
JamesPei应助小城采纳,获得10
19秒前
大模型应助简单7879采纳,获得10
19秒前
Zbmd发布了新的文献求助10
19秒前
启程牛牛完成签到,获得积分0
20秒前
20秒前
21秒前
浊轶发布了新的文献求助10
21秒前
隐形的长颈鹿完成签到,获得积分10
22秒前
个性的裙子完成签到,获得积分10
22秒前
zhou完成签到,获得积分10
23秒前
23秒前
科研通AI5应助青mu采纳,获得10
23秒前
浮游应助弱势主义接班人采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050750
求助须知:如何正确求助?哪些是违规求助? 4278368
关于积分的说明 13336233
捐赠科研通 4093439
什么是DOI,文献DOI怎么找? 2240279
邀请新用户注册赠送积分活动 1246913
关于科研通互助平台的介绍 1175892