亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extraction of Construction Quality Requirements from Textual Specifications via Natural Language Processing

计算机科学 解析 判决 卷积神经网络 过程(计算) 人工智能 文字2vec 自然语言处理 质量(理念) 组分(热力学) 质量保证 程序设计语言 工程类 哲学 运营管理 物理 外部质量评估 嵌入 认识论 热力学
作者
JungHo Jeon,Xin Xu,Yuxi Zhang,Yang Liu,Hubo Cai
出处
期刊:Transportation Research Record [SAGE]
卷期号:2675 (9): 222-237 被引量:10
标识
DOI:10.1177/03611981211001385
摘要

Construction inspection is an essential component of the quality assurance programs of state transportation agencies (STAs), and the guidelines for this process reside in lengthy textual specifications. In the current practice, engineers and inspectors must manually go through these documents to plan, conduct, and document their inspections, which is time-consuming, very subjective, inconsistent, and prone to error. A promising alternative to this manual process is the application of natural language processing (NLP) techniques (e.g., text parsing, sentence classification, and syntactic analysis) to automatically extract construction inspection requirements from textual documents and present them as straightforward check questions. This paper introduces an NLP-based method that: 1) extracts individual sentences from the construction specification; 2) preprocesses the resulting sentences; 3) applies Word2Vec and GloVe algorithms to extract vector features; 4) uses a convolutional neural network (CNN) and recurrent neural network to classify sentences; and 5) converts the requirement sentences into check questions via syntactic analysis. The overall methodology was assessed using the Indiana Department of Transportation (DOT) specification as a test case. Our results revealed that the CNN + GloVe combination led to the highest accuracy, at 91.9%, and the lowest loss, at 11.7%. To further validate its use across STAs nationwide, we applied it to the construction specification of the South Carolina DOT as a test case, and our average accuracy was 92.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助魏欣娜采纳,获得10
13秒前
小马甲应助cometx采纳,获得10
17秒前
风趣的梦露完成签到 ,获得积分10
23秒前
vinci完成签到,获得积分10
24秒前
淡淡的洋葱完成签到,获得积分10
32秒前
Panacea完成签到 ,获得积分10
33秒前
独特的易形完成签到 ,获得积分10
39秒前
43秒前
jeff完成签到,获得积分10
43秒前
45秒前
开胃咖喱完成签到,获得积分10
46秒前
Huzhu发布了新的文献求助10
52秒前
Tania完成签到,获得积分10
55秒前
1分钟前
1分钟前
1分钟前
cometx发布了新的文献求助10
1分钟前
1分钟前
花陵完成签到 ,获得积分10
1分钟前
帅气的熊猫完成签到,获得积分10
1分钟前
粽子完成签到,获得积分10
1分钟前
彭于晏应助阿瓜师傅采纳,获得10
1分钟前
1分钟前
不才完成签到,获得积分10
1分钟前
cometx完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
2分钟前
去码头整点薯条完成签到,获得积分10
2分钟前
徐per爱豆完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
3分钟前
ADcal完成签到 ,获得积分10
3分钟前
3分钟前
badabadaba关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
badabadaba发布了新的文献求助30
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177