Extraction of Construction Quality Requirements from Textual Specifications via Natural Language Processing

计算机科学 解析 判决 卷积神经网络 过程(计算) 人工智能 文字2vec 自然语言处理 质量(理念) 组分(热力学) 质量保证 程序设计语言 工程类 哲学 运营管理 物理 外部质量评估 嵌入 认识论 热力学
作者
JungHo Jeon,Xin Xu,Yuxi Zhang,Yang Liu,Hubo Cai
出处
期刊:Transportation Research Record [SAGE]
卷期号:2675 (9): 222-237 被引量:10
标识
DOI:10.1177/03611981211001385
摘要

Construction inspection is an essential component of the quality assurance programs of state transportation agencies (STAs), and the guidelines for this process reside in lengthy textual specifications. In the current practice, engineers and inspectors must manually go through these documents to plan, conduct, and document their inspections, which is time-consuming, very subjective, inconsistent, and prone to error. A promising alternative to this manual process is the application of natural language processing (NLP) techniques (e.g., text parsing, sentence classification, and syntactic analysis) to automatically extract construction inspection requirements from textual documents and present them as straightforward check questions. This paper introduces an NLP-based method that: 1) extracts individual sentences from the construction specification; 2) preprocesses the resulting sentences; 3) applies Word2Vec and GloVe algorithms to extract vector features; 4) uses a convolutional neural network (CNN) and recurrent neural network to classify sentences; and 5) converts the requirement sentences into check questions via syntactic analysis. The overall methodology was assessed using the Indiana Department of Transportation (DOT) specification as a test case. Our results revealed that the CNN + GloVe combination led to the highest accuracy, at 91.9%, and the lowest loss, at 11.7%. To further validate its use across STAs nationwide, we applied it to the construction specification of the South Carolina DOT as a test case, and our average accuracy was 92.6%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欧阳完成签到,获得积分10
刚刚
符驳完成签到,获得积分10
1秒前
Aga_Sea关注了科研通微信公众号
1秒前
pb完成签到,获得积分10
1秒前
刘璐发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
HanGuilin发布了新的文献求助10
2秒前
可爱的函函应助猪猪hero采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6应助沉静朋友采纳,获得10
3秒前
慕青应助稚生w采纳,获得10
3秒前
慕青应助王金金采纳,获得10
4秒前
4秒前
小生不才发布了新的文献求助10
4秒前
4秒前
4秒前
柯英钊完成签到,获得积分10
5秒前
科研通AI6应助淡然白安采纳,获得10
5秒前
lizhiqian2024发布了新的文献求助10
5秒前
582697438关注了科研通微信公众号
6秒前
一瓶小牛奶吖完成签到 ,获得积分10
6秒前
zzbyxh完成签到,获得积分0
6秒前
6秒前
6秒前
ooooodai发布了新的文献求助10
6秒前
打打应助Qi采纳,获得30
7秒前
ZOE应助想吃螺蛳粉采纳,获得30
8秒前
和风晓月发布了新的文献求助10
8秒前
科研通AI6应助夏小胖采纳,获得10
8秒前
闾丘剑封发布了新的文献求助10
8秒前
丰富无色完成签到,获得积分10
8秒前
zbc完成签到,获得积分20
8秒前
思源应助帆帆帆采纳,获得10
9秒前
小田完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284