LightGBM: an efficient and accurate method for predicting pregnancy diseases

医学 怀孕 机器学习 逻辑回归 人工智能 决策树 梯度升压 Boosting(机器学习) 产科 随机森林 计算机科学 遗传学 生物
作者
Hualong Liao,Xinyuan Zhang,Can Zhao,Yu Chen,Xiaoxi Zeng,Huafeng Li
出处
期刊:Journal of Obstetrics and Gynaecology [Informa]
卷期号:42 (4): 620-629 被引量:16
标识
DOI:10.1080/01443615.2021.1945006
摘要

As machine learning is becoming the fashion in disease prediction while no prediction model has performed very efficiently and accurately on predicting pregnancy diseases up to now, it's necessary to compare several common machine learning methods' performance on pregnancy diseases prediction and select out the best one. The data of two common pregnancy complications, pregnancy-induced hypertension (PIH) and Intrahepatic cholestasis of pregnancy (ICP), based on various maternal characteristics measured in patients' routine blood examination in 10-19 weeks of gestation are considered to be suitable to be learned. This is a retrospective study of 320 healthy pregnancies in 10-19 weeks, with 149 patients who subsequently developed PIH and 250 patients who subsequently developed ICP. Nine machine learning methods were used to predict PIH and ICP and their performance was compared via 8 evaluation indexes. Finally, the light Gradient Boosting Machine (lightGBM) is considered to be the best method to predict gestational diseases.Impact statementWhat is already known on this subject? As a kind of commonly used method in disease prediction, machine learning could be applied to clinical data for developing robust risk models and many achievements have been made. Also, machine learning can be used to predict pregnancy diseases. Although some machine learning methods have been used for screening gestational diseases, methods based on simple theories, such as logistic regression and decision tree, are frequently used. They don't always have a very satisfactory prediction results. Besides, only a few types of pregnancy diseases can be predicted.What do the results of this study add? LightGBM has the best prediction results of PIH and ICP among 9 machine learning methods in this study. It can predict PIH (AUC = 81.72%) with a sensitivity of 70.59%, and ICP (AUC = 95.91%) with a sensitivity of 97.91%.What are the implications of these findings for clinical practice and/or further research? A new model has been developed for effective first-trimester screening for two common pregnancy diseases, PIH and ICP. This lightGBM model can be used in relative hospitals and population of the research, and provide references for doctors' diagnosis and treatment of pregnant women. In further research, the predicted effect of lightGBM on daily practice and other pregnancy diseases such as pregnancy diabetes, will be verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
洁净之柔完成签到,获得积分10
1秒前
2秒前
3秒前
宋晓静完成签到,获得积分10
3秒前
共享精神应助AoAoo采纳,获得10
5秒前
小猪啵比完成签到 ,获得积分20
6秒前
xin_you完成签到,获得积分10
6秒前
miemie66完成签到,获得积分10
6秒前
寒冷的奇异果完成签到,获得积分10
6秒前
A9W01U完成签到,获得积分10
7秒前
kean1943完成签到,获得积分10
7秒前
阿和完成签到,获得积分10
8秒前
sabre1980完成签到 ,获得积分10
8秒前
局内人完成签到,获得积分10
8秒前
wpc2o1o完成签到,获得积分10
9秒前
10秒前
宇文天思完成签到,获得积分10
10秒前
11秒前
12秒前
这小猪真帅完成签到,获得积分10
13秒前
剑履上殿完成签到,获得积分10
14秒前
5433完成签到,获得积分10
14秒前
AoAoo发布了新的文献求助10
15秒前
JingP完成签到,获得积分10
15秒前
jackie完成签到,获得积分10
16秒前
飞哥完成签到 ,获得积分10
16秒前
wenjian完成签到,获得积分10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
mmyhn应助科研通管家采纳,获得20
17秒前
Hello应助科研通管家采纳,获得10
17秒前
梅良心完成签到 ,获得积分10
17秒前
17秒前
搞怪隶完成签到 ,获得积分20
17秒前
精明云朵完成签到 ,获得积分10
17秒前
鸭鸭要学习鸭完成签到 ,获得积分10
17秒前
liumu完成签到 ,获得积分10
18秒前
Swiftie完成签到 ,获得积分10
18秒前
杨白秋完成签到,获得积分10
18秒前
科yt完成签到,获得积分10
19秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793788
关于积分的说明 7807511
捐赠科研通 2450069
什么是DOI,文献DOI怎么找? 1303637
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350