LightGBM: an efficient and accurate method for predicting pregnancy diseases

医学 怀孕 机器学习 逻辑回归 人工智能 决策树 梯度升压 Boosting(机器学习) 产科 随机森林 计算机科学 遗传学 生物
作者
Hualong Liao,Xinyuan Zhang,Can Zhao,Yu Chen,Xiaoxi Zeng,Huafeng Li
出处
期刊:Journal of Obstetrics and Gynaecology [Informa]
卷期号:42 (4): 620-629 被引量:24
标识
DOI:10.1080/01443615.2021.1945006
摘要

As machine learning is becoming the fashion in disease prediction while no prediction model has performed very efficiently and accurately on predicting pregnancy diseases up to now, it's necessary to compare several common machine learning methods' performance on pregnancy diseases prediction and select out the best one. The data of two common pregnancy complications, pregnancy-induced hypertension (PIH) and Intrahepatic cholestasis of pregnancy (ICP), based on various maternal characteristics measured in patients' routine blood examination in 10-19 weeks of gestation are considered to be suitable to be learned. This is a retrospective study of 320 healthy pregnancies in 10-19 weeks, with 149 patients who subsequently developed PIH and 250 patients who subsequently developed ICP. Nine machine learning methods were used to predict PIH and ICP and their performance was compared via 8 evaluation indexes. Finally, the light Gradient Boosting Machine (lightGBM) is considered to be the best method to predict gestational diseases.Impact statementWhat is already known on this subject? As a kind of commonly used method in disease prediction, machine learning could be applied to clinical data for developing robust risk models and many achievements have been made. Also, machine learning can be used to predict pregnancy diseases. Although some machine learning methods have been used for screening gestational diseases, methods based on simple theories, such as logistic regression and decision tree, are frequently used. They don't always have a very satisfactory prediction results. Besides, only a few types of pregnancy diseases can be predicted.What do the results of this study add? LightGBM has the best prediction results of PIH and ICP among 9 machine learning methods in this study. It can predict PIH (AUC = 81.72%) with a sensitivity of 70.59%, and ICP (AUC = 95.91%) with a sensitivity of 97.91%.What are the implications of these findings for clinical practice and/or further research? A new model has been developed for effective first-trimester screening for two common pregnancy diseases, PIH and ICP. This lightGBM model can be used in relative hospitals and population of the research, and provide references for doctors' diagnosis and treatment of pregnant women. In further research, the predicted effect of lightGBM on daily practice and other pregnancy diseases such as pregnancy diabetes, will be verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
诺颜爱完成签到,获得积分10
刚刚
都可以完成签到,获得积分10
1秒前
李健的小迷弟应助zz采纳,获得10
1秒前
mauve完成签到 ,获得积分10
1秒前
寄草完成签到,获得积分10
1秒前
impulsive完成签到,获得积分10
2秒前
lisier完成签到,获得积分10
2秒前
Anonymous完成签到,获得积分10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
程希悦发布了新的文献求助10
4秒前
毛彬发布了新的文献求助10
4秒前
4秒前
烟花应助烟雨梦兮采纳,获得10
4秒前
wuta完成签到,获得积分10
5秒前
5秒前
饱满的小霜完成签到,获得积分20
5秒前
123完成签到,获得积分10
5秒前
诺颜爱发布了新的文献求助30
5秒前
虚幻芷完成签到,获得积分10
6秒前
Hello应助自然有手就行采纳,获得10
6秒前
疯狂老登完成签到,获得积分10
7秒前
华仔应助舒一一采纳,获得10
7秒前
kasumin完成签到,获得积分10
8秒前
脑洞疼应助Moscrol采纳,获得10
8秒前
文献通完成签到 ,获得积分10
8秒前
甜蜜寄文发布了新的文献求助10
8秒前
Shina完成签到,获得积分10
9秒前
9秒前
二号发布了新的文献求助10
10秒前
小杜发布了新的文献求助10
11秒前
pureivy22完成签到,获得积分10
11秒前
冷酷严青发布了新的文献求助10
12秒前
刻苦千琴完成签到,获得积分10
12秒前
wlm完成签到,获得积分10
12秒前
栀初发布了新的文献求助10
12秒前
大模型应助木子西采纳,获得10
12秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582