已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Use of Thermal Imaging and Deep Learning for Pulmonary Diagnostics and Infection Detection

慢性阻塞性肺病 医学 哮喘 肺功能测试 呼吸系统 肺病 内科学 肺部感染 疾病 重症监护医学
作者
Suzie Byun,Bernardo García Bulle Bueno,Yogesh Kumar Gupta,Nagesh Dhadge,Shrikant Pawar,Rahul Kodgule,Roger Fletcher
标识
DOI:10.1109/bsn51625.2021.9507018
摘要

Pulmonary diseases are a leading cause of mortality and disability, but lack of simple low-cost tools to help diagnose and screen for such diseases. In this paper, we present results from a preliminary study exploring the use of thermal imaging as a possible diagnostic tool for several common pulmonary diseases including Asthma, COPD, ILD, Allergic Rhinitis, and Respiratory Infection. As part of a global health study, thermal images of the face were collected from 125 pulmonary disease patients as well as 11 healthy controls. All subjects were evaluated using a full pulmonary function test (PFT) and diagnosed by an experienced chest physician. For each pulmonary disease, we developed a separate naïve 2-layer CNN model as well as a transfer learning CNN model, using a more complex pre-trained ResNet50 model. The naïve CNN models demonstrated an accuracy of AUC = 0.75 for respiratory infection and an AUC=0.76 for COPD, but lacked any significant predictive value for other pulmonary diseases. The transfer learning CNN models demonstrated an accuracy of AUC = 0.82 for respiratory infection and AUC=0.81 for COPD, but exhibited poor performance for other pulmonary diseases. From these results, we conclude that a facial thermal image can be a useful tool to help identify respiratory infections as well as COPD. It is also important to note that none of the patients in our study had a significant fever (T >100.4 °F) that would be predictive of infection, and our CNN models were also able to distinguish Respiratory Infection from other pulmonary diseases including COPD. Given that thermal imaging is a non-contact measurement, such a tool could be of tremendous value in low resource settings or global health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美谷秋完成签到 ,获得积分10
刚刚
小凯完成签到 ,获得积分10
刚刚
崔洪瑞完成签到,获得积分10
3秒前
乔峰完成签到,获得积分10
4秒前
xx发布了新的文献求助10
4秒前
猜不猜不完成签到 ,获得积分10
4秒前
小白完成签到 ,获得积分10
5秒前
6秒前
YuuuY完成签到 ,获得积分10
6秒前
7秒前
缓慢的灵枫完成签到 ,获得积分10
8秒前
Rain完成签到,获得积分10
8秒前
9秒前
genius完成签到 ,获得积分10
10秒前
10秒前
02发布了新的文献求助10
12秒前
阿布与小佛完成签到 ,获得积分10
12秒前
美满的咖啡豆完成签到,获得积分10
13秒前
hahahan完成签到 ,获得积分10
14秒前
15秒前
15秒前
16秒前
日尧发布了新的文献求助10
16秒前
cyy发布了新的文献求助10
17秒前
17秒前
SEAL完成签到 ,获得积分10
17秒前
serendipity完成签到 ,获得积分10
20秒前
小马甲应助02采纳,获得10
20秒前
Sylvia完成签到 ,获得积分10
21秒前
林竹言完成签到 ,获得积分20
22秒前
pycmed发布了新的文献求助10
22秒前
斯文败类应助积极的绫采纳,获得10
24秒前
24秒前
包容仙人掌完成签到,获得积分10
25秒前
26秒前
粗心的小蜜蜂完成签到,获得积分10
26秒前
盛事不朽完成签到 ,获得积分10
26秒前
kenti2023完成签到 ,获得积分10
27秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5006450
求助须知:如何正确求助?哪些是违规求助? 4249851
关于积分的说明 13242181
捐赠科研通 4049849
什么是DOI,文献DOI怎么找? 2215504
邀请新用户注册赠送积分活动 1225423
关于科研通互助平台的介绍 1146075