亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Use of Thermal Imaging and Deep Learning for Pulmonary Diagnostics and Infection Detection

慢性阻塞性肺病 医学 哮喘 肺功能测试 呼吸系统 肺病 内科学 肺部感染 疾病 重症监护医学
作者
Suzie Byun,Bernardo García Bulle Bueno,Yogesh Kumar Gupta,Nagesh Dhadge,Shrikant Pawar,Rahul Kodgule,Roger Fletcher
标识
DOI:10.1109/bsn51625.2021.9507018
摘要

Pulmonary diseases are a leading cause of mortality and disability, but lack of simple low-cost tools to help diagnose and screen for such diseases. In this paper, we present results from a preliminary study exploring the use of thermal imaging as a possible diagnostic tool for several common pulmonary diseases including Asthma, COPD, ILD, Allergic Rhinitis, and Respiratory Infection. As part of a global health study, thermal images of the face were collected from 125 pulmonary disease patients as well as 11 healthy controls. All subjects were evaluated using a full pulmonary function test (PFT) and diagnosed by an experienced chest physician. For each pulmonary disease, we developed a separate naïve 2-layer CNN model as well as a transfer learning CNN model, using a more complex pre-trained ResNet50 model. The naïve CNN models demonstrated an accuracy of AUC = 0.75 for respiratory infection and an AUC=0.76 for COPD, but lacked any significant predictive value for other pulmonary diseases. The transfer learning CNN models demonstrated an accuracy of AUC = 0.82 for respiratory infection and AUC=0.81 for COPD, but exhibited poor performance for other pulmonary diseases. From these results, we conclude that a facial thermal image can be a useful tool to help identify respiratory infections as well as COPD. It is also important to note that none of the patients in our study had a significant fever (T >100.4 °F) that would be predictive of infection, and our CNN models were also able to distinguish Respiratory Infection from other pulmonary diseases including COPD. Given that thermal imaging is a non-contact measurement, such a tool could be of tremendous value in low resource settings or global health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助叙温雨采纳,获得10
12秒前
19秒前
29秒前
TXZ06发布了新的文献求助10
33秒前
papi完成签到 ,获得积分10
35秒前
39秒前
46秒前
叙温雨发布了新的文献求助10
52秒前
英俊的铭应助科研通管家采纳,获得10
54秒前
浮游应助科研通管家采纳,获得10
54秒前
55秒前
优秀棒棒糖完成签到 ,获得积分10
59秒前
1分钟前
个性的大白菜真实的钥匙完成签到,获得积分10
1分钟前
1分钟前
深情安青应助叙温雨采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
CCccCCC发布了新的文献求助10
2分钟前
叙温雨发布了新的文献求助10
2分钟前
烟消云散完成签到,获得积分10
2分钟前
英俊的铭应助叙温雨采纳,获得10
2分钟前
Orange应助xlj采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
爆米花应助芝士采纳,获得10
3分钟前
王馨雨完成签到,获得积分10
3分钟前
hll完成签到,获得积分10
3分钟前
3分钟前
xlj发布了新的文献求助10
3分钟前
3分钟前
zly完成签到 ,获得积分10
3分钟前
3分钟前
丘比特应助xxl采纳,获得10
3分钟前
叙温雨发布了新的文献求助10
3分钟前
henry应助TX采纳,获得100
3分钟前
3分钟前
小李子发布了新的文献求助10
3分钟前
Spice完成签到 ,获得积分10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291940
求助须知:如何正确求助?哪些是违规求助? 4442703
关于积分的说明 13830302
捐赠科研通 4325936
什么是DOI,文献DOI怎么找? 2374538
邀请新用户注册赠送积分活动 1369853
关于科研通互助平台的介绍 1334214