慢性阻塞性肺病
医学
哮喘
肺功能测试
呼吸系统
肺病
内科学
肺部感染
疾病
重症监护医学
作者
Suzie Byun,Bernardo García Bulle Bueno,Yogesh Kumar Gupta,Nagesh Dhadge,Shrikant Pawar,Rahul Kodgule,Roger Fletcher
标识
DOI:10.1109/bsn51625.2021.9507018
摘要
Pulmonary diseases are a leading cause of mortality and disability, but lack of simple low-cost tools to help diagnose and screen for such diseases. In this paper, we present results from a preliminary study exploring the use of thermal imaging as a possible diagnostic tool for several common pulmonary diseases including Asthma, COPD, ILD, Allergic Rhinitis, and Respiratory Infection. As part of a global health study, thermal images of the face were collected from 125 pulmonary disease patients as well as 11 healthy controls. All subjects were evaluated using a full pulmonary function test (PFT) and diagnosed by an experienced chest physician. For each pulmonary disease, we developed a separate naïve 2-layer CNN model as well as a transfer learning CNN model, using a more complex pre-trained ResNet50 model. The naïve CNN models demonstrated an accuracy of AUC = 0.75 for respiratory infection and an AUC=0.76 for COPD, but lacked any significant predictive value for other pulmonary diseases. The transfer learning CNN models demonstrated an accuracy of AUC = 0.82 for respiratory infection and AUC=0.81 for COPD, but exhibited poor performance for other pulmonary diseases. From these results, we conclude that a facial thermal image can be a useful tool to help identify respiratory infections as well as COPD. It is also important to note that none of the patients in our study had a significant fever (T >100.4 °F) that would be predictive of infection, and our CNN models were also able to distinguish Respiratory Infection from other pulmonary diseases including COPD. Given that thermal imaging is a non-contact measurement, such a tool could be of tremendous value in low resource settings or global health.
科研通智能强力驱动
Strongly Powered by AbleSci AI