The Use of Thermal Imaging and Deep Learning for Pulmonary Diagnostics and Infection Detection

慢性阻塞性肺病 医学 哮喘 肺功能测试 呼吸系统 肺病 内科学 肺部感染 疾病 重症监护医学
作者
Suzie Byun,Bernardo García Bulle Bueno,Yogesh Kumar Gupta,Nagesh Dhadge,Shrikant Pawar,Rahul Kodgule,Roger Fletcher
标识
DOI:10.1109/bsn51625.2021.9507018
摘要

Pulmonary diseases are a leading cause of mortality and disability, but lack of simple low-cost tools to help diagnose and screen for such diseases. In this paper, we present results from a preliminary study exploring the use of thermal imaging as a possible diagnostic tool for several common pulmonary diseases including Asthma, COPD, ILD, Allergic Rhinitis, and Respiratory Infection. As part of a global health study, thermal images of the face were collected from 125 pulmonary disease patients as well as 11 healthy controls. All subjects were evaluated using a full pulmonary function test (PFT) and diagnosed by an experienced chest physician. For each pulmonary disease, we developed a separate naïve 2-layer CNN model as well as a transfer learning CNN model, using a more complex pre-trained ResNet50 model. The naïve CNN models demonstrated an accuracy of AUC = 0.75 for respiratory infection and an AUC=0.76 for COPD, but lacked any significant predictive value for other pulmonary diseases. The transfer learning CNN models demonstrated an accuracy of AUC = 0.82 for respiratory infection and AUC=0.81 for COPD, but exhibited poor performance for other pulmonary diseases. From these results, we conclude that a facial thermal image can be a useful tool to help identify respiratory infections as well as COPD. It is also important to note that none of the patients in our study had a significant fever (T >100.4 °F) that would be predictive of infection, and our CNN models were also able to distinguish Respiratory Infection from other pulmonary diseases including COPD. Given that thermal imaging is a non-contact measurement, such a tool could be of tremendous value in low resource settings or global health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bio2236292872关注了科研通微信公众号
1秒前
1秒前
1秒前
闪闪雁兰发布了新的文献求助10
2秒前
机灵一兰发布了新的文献求助10
3秒前
酷波er应助子凯采纳,获得10
4秒前
是小曹啊发布了新的文献求助10
4秒前
Jasper应助高高亿先采纳,获得10
5秒前
5秒前
6秒前
LaTeXer应助羊羊杨采纳,获得50
6秒前
思源应助往返采纳,获得10
6秒前
7秒前
zhang值发布了新的文献求助10
7秒前
艾科研发布了新的文献求助30
7秒前
淡定的往事完成签到,获得积分10
7秒前
SciGPT应助桃源theshy采纳,获得10
9秒前
drjim完成签到,获得积分20
10秒前
10秒前
隐形曼青应助一个采纳,获得10
10秒前
drjim发布了新的文献求助10
12秒前
LIN完成签到,获得积分10
14秒前
逢考必过完成签到 ,获得积分10
14秒前
14秒前
14秒前
15秒前
15秒前
lianqing发布了新的文献求助10
16秒前
赘婿应助苏格拉底的嘲笑采纳,获得10
16秒前
SciGPT应助zhangzhang采纳,获得10
17秒前
领导范儿应助坚强的茗茗采纳,获得10
17秒前
18秒前
19秒前
SciGPT应助xxxx采纳,获得10
19秒前
往返发布了新的文献求助10
19秒前
迷路柜子完成签到 ,获得积分10
20秒前
20秒前
桃源theshy发布了新的文献求助10
20秒前
是小曹啊完成签到,获得积分10
20秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061