已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Use of Thermal Imaging and Deep Learning for Pulmonary Diagnostics and Infection Detection

慢性阻塞性肺病 医学 哮喘 肺功能测试 呼吸系统 肺病 内科学 肺部感染 疾病 重症监护医学
作者
Suzie Byun,Bernardo García Bulle Bueno,Yogesh Kumar Gupta,Nagesh Dhadge,Shrikant Pawar,Rahul Kodgule,Roger Fletcher
标识
DOI:10.1109/bsn51625.2021.9507018
摘要

Pulmonary diseases are a leading cause of mortality and disability, but lack of simple low-cost tools to help diagnose and screen for such diseases. In this paper, we present results from a preliminary study exploring the use of thermal imaging as a possible diagnostic tool for several common pulmonary diseases including Asthma, COPD, ILD, Allergic Rhinitis, and Respiratory Infection. As part of a global health study, thermal images of the face were collected from 125 pulmonary disease patients as well as 11 healthy controls. All subjects were evaluated using a full pulmonary function test (PFT) and diagnosed by an experienced chest physician. For each pulmonary disease, we developed a separate naïve 2-layer CNN model as well as a transfer learning CNN model, using a more complex pre-trained ResNet50 model. The naïve CNN models demonstrated an accuracy of AUC = 0.75 for respiratory infection and an AUC=0.76 for COPD, but lacked any significant predictive value for other pulmonary diseases. The transfer learning CNN models demonstrated an accuracy of AUC = 0.82 for respiratory infection and AUC=0.81 for COPD, but exhibited poor performance for other pulmonary diseases. From these results, we conclude that a facial thermal image can be a useful tool to help identify respiratory infections as well as COPD. It is also important to note that none of the patients in our study had a significant fever (T >100.4 °F) that would be predictive of infection, and our CNN models were also able to distinguish Respiratory Infection from other pulmonary diseases including COPD. Given that thermal imaging is a non-contact measurement, such a tool could be of tremendous value in low resource settings or global health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LinYZ完成签到 ,获得积分10
1秒前
骆十八发布了新的文献求助10
1秒前
6秒前
Jasper应助ceeray23采纳,获得20
6秒前
kun关闭了kun文献求助
6秒前
骆十八完成签到,获得积分10
9秒前
12秒前
舒心砖家完成签到 ,获得积分10
12秒前
13秒前
所所应助dnnnsns采纳,获得30
15秒前
科研狗完成签到 ,获得积分10
15秒前
莫mo完成签到,获得积分10
16秒前
16秒前
16秒前
NexusExplorer应助无心采纳,获得10
18秒前
hms完成签到 ,获得积分10
19秒前
莫mo发布了新的文献求助10
20秒前
21秒前
22秒前
冷漠曲奇发布了新的文献求助10
22秒前
何为完成签到 ,获得积分10
24秒前
小树枝发布了新的文献求助10
26秒前
26秒前
wop111发布了新的文献求助30
28秒前
艺_完成签到 ,获得积分10
29秒前
科研通AI5应助wang采纳,获得10
36秒前
大个应助长情胡萝卜采纳,获得10
36秒前
kun发布了新的文献求助60
36秒前
乐乐应助所有事情都上岸采纳,获得10
37秒前
牛牛完成签到 ,获得积分10
37秒前
zbx完成签到,获得积分10
39秒前
42秒前
Leofar完成签到 ,获得积分10
45秒前
酒尚温完成签到 ,获得积分10
47秒前
果茶去冰完成签到 ,获得积分10
48秒前
48秒前
51秒前
在水一方应助负责含海采纳,获得10
57秒前
在水一方应助科研通管家采纳,获得50
58秒前
FashionBoy应助科研通管家采纳,获得10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172653
求助须知:如何正确求助?哪些是违规求助? 4362841
关于积分的说明 13584605
捐赠科研通 4210933
什么是DOI,文献DOI怎么找? 2309545
邀请新用户注册赠送积分活动 1308652
关于科研通互助平台的介绍 1255860