The Use of Thermal Imaging and Deep Learning for Pulmonary Diagnostics and Infection Detection

慢性阻塞性肺病 医学 哮喘 肺功能测试 呼吸系统 肺病 内科学 肺部感染 疾病 重症监护医学
作者
Suzie Byun,Bernardo García Bulle Bueno,Yogesh Kumar Gupta,Nagesh Dhadge,Shrikant Pawar,Rahul Kodgule,Roger Fletcher
标识
DOI:10.1109/bsn51625.2021.9507018
摘要

Pulmonary diseases are a leading cause of mortality and disability, but lack of simple low-cost tools to help diagnose and screen for such diseases. In this paper, we present results from a preliminary study exploring the use of thermal imaging as a possible diagnostic tool for several common pulmonary diseases including Asthma, COPD, ILD, Allergic Rhinitis, and Respiratory Infection. As part of a global health study, thermal images of the face were collected from 125 pulmonary disease patients as well as 11 healthy controls. All subjects were evaluated using a full pulmonary function test (PFT) and diagnosed by an experienced chest physician. For each pulmonary disease, we developed a separate naïve 2-layer CNN model as well as a transfer learning CNN model, using a more complex pre-trained ResNet50 model. The naïve CNN models demonstrated an accuracy of AUC = 0.75 for respiratory infection and an AUC=0.76 for COPD, but lacked any significant predictive value for other pulmonary diseases. The transfer learning CNN models demonstrated an accuracy of AUC = 0.82 for respiratory infection and AUC=0.81 for COPD, but exhibited poor performance for other pulmonary diseases. From these results, we conclude that a facial thermal image can be a useful tool to help identify respiratory infections as well as COPD. It is also important to note that none of the patients in our study had a significant fever (T >100.4 °F) that would be predictive of infection, and our CNN models were also able to distinguish Respiratory Infection from other pulmonary diseases including COPD. Given that thermal imaging is a non-contact measurement, such a tool could be of tremendous value in low resource settings or global health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助陈尹蓝采纳,获得10
1秒前
善学以致用应助小牛超人采纳,获得10
1秒前
Akim应助清风明月采纳,获得10
2秒前
hoojack发布了新的文献求助10
3秒前
bai关注了科研通微信公众号
3秒前
pu发布了新的文献求助30
3秒前
4秒前
sagapo完成签到 ,获得积分10
5秒前
fabian完成签到,获得积分10
5秒前
5秒前
ivytian完成签到,获得积分10
5秒前
JamesPei应助zjq采纳,获得10
5秒前
Ava应助IAMXC采纳,获得10
5秒前
7秒前
劉平果发布了新的文献求助20
8秒前
拓荒者发布了新的文献求助10
9秒前
慕辰曦完成签到,获得积分10
9秒前
9秒前
Lucas应助嘻嘻采纳,获得10
10秒前
ccccccy发布了新的文献求助30
10秒前
bd应助王金金采纳,获得10
10秒前
11秒前
11秒前
wwwww完成签到,获得积分10
12秒前
小白完成签到 ,获得积分10
13秒前
ai化学发布了新的文献求助10
13秒前
莫妮卡.宾完成签到 ,获得积分10
13秒前
十月发布了新的文献求助10
14秒前
宁少爷应助Chen采纳,获得30
15秒前
顾矜应助Nitesith采纳,获得10
15秒前
GSirius发布了新的文献求助10
15秒前
不安毛豆发布了新的文献求助10
15秒前
16秒前
lisa发布了新的文献求助10
17秒前
思源应助naturehome采纳,获得10
17秒前
陈尹蓝发布了新的文献求助10
18秒前
19秒前
21秒前
大个应助hoojack采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145621
求助须知:如何正确求助?哪些是违规求助? 2797097
关于积分的说明 7822848
捐赠科研通 2453435
什么是DOI,文献DOI怎么找? 1305652
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601469