亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Raman spectroscopy and machine learning for the classification of breast cancers

乳腺癌 拉曼光谱 人工智能 机器学习 支持向量机 线性判别分析 主成分分析 计算机科学 癌症 模式识别(心理学) 肿瘤科 医学 内科学 物理 光学
作者
Lihao Zhang,Chengjian Li,Di Peng,Xiaofei Yi,Shuai He,Fengxiang Liu,Xiangtai Zheng,Wei E. Huang,Liang Zhao,Xia Huang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:264: 120300-120300 被引量:137
标识
DOI:10.1016/j.saa.2021.120300
摘要

Breast cancer is a major health threat for women. The drug responses associated with different breast cancer subtypes have obvious effects on therapeutic outcomes; therefore, the accurate classification of breast cancer subtypes is critical. Breast cancer subtype classification has recently been examined using various methods, and Raman spectroscopy has emerged as an effective technique that can be used for noninvasive breast cancer analysis. However, the accurate and rapid classification of breast cancer subtypes currently requires a great deal of effort and experience with the processing and analysis of Raman spectra data. Here, we adopted Raman spectroscopy and machine learning techniques to simplify and accelerate the process used to distinguish normal from breast cancer cells and classify breast cancer subtypes. Raman spectra were obtained from cultured breast cancer cell lines, and the data were analyzed by two machine learning algorithms: principal component analysis (PCA)-discriminant function analysis (DFA) and PCA-support vector machine (SVM). The accuracies with which these two algorithms were able to distinguish normal breast cells from breast cancer cells were both greater than 97%, and the accuracies of breast cancer subtype classification for both algorithms were both greater than 92%. Moreover, our results showed evidence to support the use of characteristic Raman spectral features as cancer cell biomarkers, such as the intensity of intrinsic Raman bands, which increased in cancer cells. Raman spectroscopy combined with machine learning techniques provides a rapid method for breast cancer analysis able to reveal differences in intracellular compositions and molecular structures among subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ls完成签到,获得积分10
1秒前
水牛完成签到,获得积分10
2秒前
麻辣薯条完成签到,获得积分10
3秒前
时尚身影完成签到,获得积分10
6秒前
流苏完成签到,获得积分10
10秒前
流苏2完成签到,获得积分10
13秒前
13秒前
dqs发布了新的文献求助10
18秒前
早睡早起发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
28秒前
早睡早起完成签到,获得积分10
30秒前
41秒前
呆萌剑封完成签到,获得积分20
42秒前
42秒前
赘婿应助dqs采纳,获得10
43秒前
Arthit完成签到 ,获得积分10
1分钟前
1分钟前
今后应助cactus采纳,获得10
1分钟前
OnlyHarbour发布了新的文献求助10
1分钟前
共享精神应助11采纳,获得10
1分钟前
呜呼完成签到,获得积分10
1分钟前
2分钟前
cactus发布了新的文献求助10
2分钟前
阳光以南完成签到,获得积分10
2分钟前
2分钟前
dqs发布了新的文献求助10
2分钟前
不一样的烟火完成签到 ,获得积分10
2分钟前
斯文败类应助薛雨佳采纳,获得10
2分钟前
桐桐应助dqs采纳,获得10
2分钟前
净净完成签到,获得积分20
2分钟前
晚星完成签到 ,获得积分10
2分钟前
科研通AI6应助sandaomi采纳,获得10
3分钟前
嘿嘿应助cactus采纳,获得10
4分钟前
4分钟前
4分钟前
思辰。发布了新的文献求助10
4分钟前
思辰。完成签到,获得积分10
4分钟前
shame完成签到 ,获得积分10
5分钟前
玉沐沐完成签到 ,获得积分10
5分钟前
科研通AI6应助哈哈哈采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595721
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818191
捐赠科研通 4652213
什么是DOI,文献DOI怎么找? 2535586
邀请新用户注册赠送积分活动 1503530
关于科研通互助平台的介绍 1469764