Raman spectroscopy and machine learning for the classification of breast cancers

乳腺癌 拉曼光谱 人工智能 机器学习 支持向量机 线性判别分析 主成分分析 计算机科学 癌症 模式识别(心理学) 肿瘤科 医学 内科学 物理 光学
作者
Lihao Zhang,Chengjian Li,Di Peng,Xiaofei Yi,Shuai He,Fengxiang Liu,Xiangtai Zheng,Wei E. Huang,Liang Zhao,Xia Huang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:264: 120300-120300 被引量:97
标识
DOI:10.1016/j.saa.2021.120300
摘要

Breast cancer is a major health threat for women. The drug responses associated with different breast cancer subtypes have obvious effects on therapeutic outcomes; therefore, the accurate classification of breast cancer subtypes is critical. Breast cancer subtype classification has recently been examined using various methods, and Raman spectroscopy has emerged as an effective technique that can be used for noninvasive breast cancer analysis. However, the accurate and rapid classification of breast cancer subtypes currently requires a great deal of effort and experience with the processing and analysis of Raman spectra data. Here, we adopted Raman spectroscopy and machine learning techniques to simplify and accelerate the process used to distinguish normal from breast cancer cells and classify breast cancer subtypes. Raman spectra were obtained from cultured breast cancer cell lines, and the data were analyzed by two machine learning algorithms: principal component analysis (PCA)-discriminant function analysis (DFA) and PCA-support vector machine (SVM). The accuracies with which these two algorithms were able to distinguish normal breast cells from breast cancer cells were both greater than 97%, and the accuracies of breast cancer subtype classification for both algorithms were both greater than 92%. Moreover, our results showed evidence to support the use of characteristic Raman spectral features as cancer cell biomarkers, such as the intensity of intrinsic Raman bands, which increased in cancer cells. Raman spectroscopy combined with machine learning techniques provides a rapid method for breast cancer analysis able to reveal differences in intracellular compositions and molecular structures among subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助太叔灭龙采纳,获得10
刚刚
你好啊发布了新的文献求助10
2秒前
夏岚关注了科研通微信公众号
3秒前
6秒前
111完成签到,获得积分10
7秒前
ZLY完成签到 ,获得积分10
8秒前
太叔灭龙完成签到,获得积分10
9秒前
9秒前
111发布了新的文献求助10
10秒前
冉冉完成签到 ,获得积分10
10秒前
太叔灭龙发布了新的文献求助10
13秒前
赘婿应助山水木采纳,获得10
15秒前
夏岚发布了新的文献求助10
16秒前
琉璃苣应助菜菜子采纳,获得10
17秒前
小滨发布了新的文献求助10
18秒前
Elaine完成签到,获得积分10
18秒前
jiaozhuoi完成签到,获得积分10
19秒前
19秒前
充电宝应助迅速冰颜采纳,获得10
22秒前
22秒前
你好啊发布了新的文献求助10
24秒前
25秒前
小王完成签到,获得积分10
25秒前
LC发布了新的文献求助10
26秒前
白华苍松发布了新的文献求助20
27秒前
山水木发布了新的文献求助10
27秒前
rafa完成签到 ,获得积分10
28秒前
30秒前
公孙世往发布了新的文献求助10
31秒前
小王发布了新的文献求助30
31秒前
优秀紫菜完成签到,获得积分10
33秒前
34秒前
34秒前
光亮的莆完成签到,获得积分10
35秒前
Adeline发布了新的文献求助30
36秒前
188的浩完成签到 ,获得积分10
36秒前
37秒前
小二郎应助李小汁采纳,获得10
40秒前
42秒前
电磁很快学会应助Linyi采纳,获得10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023