亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Raman spectroscopy and machine learning for the classification of breast cancers

乳腺癌 拉曼光谱 人工智能 机器学习 支持向量机 线性判别分析 主成分分析 计算机科学 癌症 模式识别(心理学) 肿瘤科 医学 内科学 物理 光学
作者
Lihao Zhang,Chengjian Li,Di Peng,Xiaofei Yi,Shuai He,Fengxiang Liu,Xiangtai Zheng,Wei E. Huang,Liang Zhao,Xia Huang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:264: 120300-120300 被引量:137
标识
DOI:10.1016/j.saa.2021.120300
摘要

Breast cancer is a major health threat for women. The drug responses associated with different breast cancer subtypes have obvious effects on therapeutic outcomes; therefore, the accurate classification of breast cancer subtypes is critical. Breast cancer subtype classification has recently been examined using various methods, and Raman spectroscopy has emerged as an effective technique that can be used for noninvasive breast cancer analysis. However, the accurate and rapid classification of breast cancer subtypes currently requires a great deal of effort and experience with the processing and analysis of Raman spectra data. Here, we adopted Raman spectroscopy and machine learning techniques to simplify and accelerate the process used to distinguish normal from breast cancer cells and classify breast cancer subtypes. Raman spectra were obtained from cultured breast cancer cell lines, and the data were analyzed by two machine learning algorithms: principal component analysis (PCA)-discriminant function analysis (DFA) and PCA-support vector machine (SVM). The accuracies with which these two algorithms were able to distinguish normal breast cells from breast cancer cells were both greater than 97%, and the accuracies of breast cancer subtype classification for both algorithms were both greater than 92%. Moreover, our results showed evidence to support the use of characteristic Raman spectral features as cancer cell biomarkers, such as the intensity of intrinsic Raman bands, which increased in cancer cells. Raman spectroscopy combined with machine learning techniques provides a rapid method for breast cancer analysis able to reveal differences in intracellular compositions and molecular structures among subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜霜发布了新的文献求助10
5秒前
李健应助科研通管家采纳,获得10
8秒前
11秒前
在水一方应助西瓜霜采纳,获得10
12秒前
18秒前
20秒前
微光发布了新的文献求助30
24秒前
小石榴爸爸完成签到 ,获得积分10
25秒前
26秒前
28秒前
微光完成签到,获得积分10
44秒前
Gryff完成签到 ,获得积分10
49秒前
thl发布了新的文献求助10
1分钟前
1分钟前
无花果应助congfeng采纳,获得10
1分钟前
suliuyin应助眯眯眼的山柳采纳,获得10
1分钟前
852应助眯眯眼的山柳采纳,获得10
1分钟前
FashionBoy应助thl采纳,获得10
1分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI2S应助另一种蓝色采纳,获得10
2分钟前
2分钟前
thl发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
CRUSADER完成签到,获得积分10
3分钟前
3分钟前
attention完成签到,获得积分10
3分钟前
cat发布了新的文献求助30
3分钟前
3分钟前
congfeng发布了新的文献求助10
3分钟前
congfeng完成签到,获得积分20
3分钟前
3分钟前
李健的小迷弟应助thl采纳,获得10
3分钟前
KUIWU完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746962
求助须知:如何正确求助?哪些是违规求助? 5441026
关于积分的说明 15356071
捐赠科研通 4886977
什么是DOI,文献DOI怎么找? 2627509
邀请新用户注册赠送积分活动 1575959
关于科研通互助平台的介绍 1532759