清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Raman spectroscopy and machine learning for the classification of breast cancers

乳腺癌 拉曼光谱 人工智能 机器学习 支持向量机 线性判别分析 主成分分析 计算机科学 癌症 模式识别(心理学) 肿瘤科 医学 内科学 物理 光学
作者
Lihao Zhang,Chengjian Li,Di Peng,Xiaofei Yi,Shuai He,Fengxiang Liu,Xiangtai Zheng,Wei E. Huang,Liang Zhao,Xia Huang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:264: 120300-120300 被引量:137
标识
DOI:10.1016/j.saa.2021.120300
摘要

Breast cancer is a major health threat for women. The drug responses associated with different breast cancer subtypes have obvious effects on therapeutic outcomes; therefore, the accurate classification of breast cancer subtypes is critical. Breast cancer subtype classification has recently been examined using various methods, and Raman spectroscopy has emerged as an effective technique that can be used for noninvasive breast cancer analysis. However, the accurate and rapid classification of breast cancer subtypes currently requires a great deal of effort and experience with the processing and analysis of Raman spectra data. Here, we adopted Raman spectroscopy and machine learning techniques to simplify and accelerate the process used to distinguish normal from breast cancer cells and classify breast cancer subtypes. Raman spectra were obtained from cultured breast cancer cell lines, and the data were analyzed by two machine learning algorithms: principal component analysis (PCA)-discriminant function analysis (DFA) and PCA-support vector machine (SVM). The accuracies with which these two algorithms were able to distinguish normal breast cells from breast cancer cells were both greater than 97%, and the accuracies of breast cancer subtype classification for both algorithms were both greater than 92%. Moreover, our results showed evidence to support the use of characteristic Raman spectral features as cancer cell biomarkers, such as the intensity of intrinsic Raman bands, which increased in cancer cells. Raman spectroscopy combined with machine learning techniques provides a rapid method for breast cancer analysis able to reveal differences in intracellular compositions and molecular structures among subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
凉宫八月完成签到,获得积分10
2秒前
XZY发布了新的文献求助10
6秒前
顾矜应助Wa1Zh0u采纳,获得10
14秒前
26秒前
知行者完成签到 ,获得积分10
39秒前
Ttimer完成签到,获得积分10
44秒前
1分钟前
深情安青应助ajing采纳,获得10
1分钟前
tt完成签到,获得积分10
1分钟前
1分钟前
酷酷的紫南完成签到 ,获得积分10
2分钟前
JamesPei应助无情的琳采纳,获得30
2分钟前
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
叶上初阳完成签到 ,获得积分10
2分钟前
3分钟前
nav完成签到 ,获得积分10
3分钟前
Criminology34发布了新的文献求助300
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助30
3分钟前
无情的琳发布了新的文献求助30
3分钟前
铁铁发布了新的文献求助10
3分钟前
大模型应助铁铁采纳,获得10
4分钟前
4分钟前
4分钟前
ding应助宁宁大王采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
愿景发布了新的文献求助10
5分钟前
5分钟前
5分钟前
hahahan完成签到 ,获得积分10
5分钟前
胖小羊完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724110
求助须知:如何正确求助?哪些是违规求助? 5284672
关于积分的说明 15299585
捐赠科研通 4872217
什么是DOI,文献DOI怎么找? 2616727
邀请新用户注册赠送积分活动 1566601
关于科研通互助平台的介绍 1523451