Raman spectroscopy and machine learning for the classification of breast cancers

乳腺癌 拉曼光谱 人工智能 机器学习 支持向量机 线性判别分析 主成分分析 计算机科学 癌症 模式识别(心理学) 肿瘤科 医学 内科学 物理 光学
作者
Lihao Zhang,Chengjian Li,Di Peng,Xiaofei Yi,Shuai He,Fengxiang Liu,Xiangtai Zheng,Wei E. Huang,Liang Zhao,Xia Huang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:264: 120300-120300 被引量:137
标识
DOI:10.1016/j.saa.2021.120300
摘要

Breast cancer is a major health threat for women. The drug responses associated with different breast cancer subtypes have obvious effects on therapeutic outcomes; therefore, the accurate classification of breast cancer subtypes is critical. Breast cancer subtype classification has recently been examined using various methods, and Raman spectroscopy has emerged as an effective technique that can be used for noninvasive breast cancer analysis. However, the accurate and rapid classification of breast cancer subtypes currently requires a great deal of effort and experience with the processing and analysis of Raman spectra data. Here, we adopted Raman spectroscopy and machine learning techniques to simplify and accelerate the process used to distinguish normal from breast cancer cells and classify breast cancer subtypes. Raman spectra were obtained from cultured breast cancer cell lines, and the data were analyzed by two machine learning algorithms: principal component analysis (PCA)-discriminant function analysis (DFA) and PCA-support vector machine (SVM). The accuracies with which these two algorithms were able to distinguish normal breast cells from breast cancer cells were both greater than 97%, and the accuracies of breast cancer subtype classification for both algorithms were both greater than 92%. Moreover, our results showed evidence to support the use of characteristic Raman spectral features as cancer cell biomarkers, such as the intensity of intrinsic Raman bands, which increased in cancer cells. Raman spectroscopy combined with machine learning techniques provides a rapid method for breast cancer analysis able to reveal differences in intracellular compositions and molecular structures among subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
嘉梦完成签到,获得积分10
3秒前
酷波er应助凶狗睡大石采纳,获得10
3秒前
CAOHOU应助yy采纳,获得10
4秒前
SAD完成签到,获得积分20
4秒前
5秒前
慕青应助光亮的万天采纳,获得10
5秒前
哈士奇野猪完成签到,获得积分20
5秒前
6秒前
6秒前
美满的红酒完成签到 ,获得积分10
6秒前
西西发布了新的文献求助10
7秒前
BINGBING1230发布了新的文献求助30
7秒前
CodeCraft应助豆芽菜采纳,获得10
8秒前
可爱的函函应助TT001采纳,获得10
8秒前
8秒前
充电宝应助东明采纳,获得10
8秒前
9秒前
清秀晓筠完成签到,获得积分10
9秒前
10秒前
JamesPei应助birdy采纳,获得10
10秒前
李健应助月圆夜采纳,获得20
10秒前
陶l发布了新的文献求助10
12秒前
无花果应助BINGBING1230采纳,获得10
12秒前
12秒前
GPTea完成签到,获得积分0
13秒前
wang发布了新的文献求助10
13秒前
lxl1996完成签到,获得积分10
13秒前
赘婿应助吕亦寒采纳,获得10
14秒前
14秒前
流水完成签到,获得积分10
15秒前
冷静的莞发布了新的文献求助60
15秒前
15秒前
15秒前
方法完成签到,获得积分10
16秒前
Hello应助Mikey_Teng采纳,获得10
17秒前
流水发布了新的文献求助10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146