已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Raman spectroscopy and machine learning for the classification of breast cancers

乳腺癌 拉曼光谱 人工智能 机器学习 支持向量机 线性判别分析 主成分分析 计算机科学 癌症 模式识别(心理学) 肿瘤科 医学 内科学 物理 光学
作者
Lihao Zhang,Chengjian Li,Di Peng,Xiaofei Yi,Shuai He,Fengxiang Liu,Xiangtai Zheng,Wei E. Huang,Liang Zhao,Xia Huang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:264: 120300-120300 被引量:109
标识
DOI:10.1016/j.saa.2021.120300
摘要

Breast cancer is a major health threat for women. The drug responses associated with different breast cancer subtypes have obvious effects on therapeutic outcomes; therefore, the accurate classification of breast cancer subtypes is critical. Breast cancer subtype classification has recently been examined using various methods, and Raman spectroscopy has emerged as an effective technique that can be used for noninvasive breast cancer analysis. However, the accurate and rapid classification of breast cancer subtypes currently requires a great deal of effort and experience with the processing and analysis of Raman spectra data. Here, we adopted Raman spectroscopy and machine learning techniques to simplify and accelerate the process used to distinguish normal from breast cancer cells and classify breast cancer subtypes. Raman spectra were obtained from cultured breast cancer cell lines, and the data were analyzed by two machine learning algorithms: principal component analysis (PCA)-discriminant function analysis (DFA) and PCA-support vector machine (SVM). The accuracies with which these two algorithms were able to distinguish normal breast cells from breast cancer cells were both greater than 97%, and the accuracies of breast cancer subtype classification for both algorithms were both greater than 92%. Moreover, our results showed evidence to support the use of characteristic Raman spectral features as cancer cell biomarkers, such as the intensity of intrinsic Raman bands, which increased in cancer cells. Raman spectroscopy combined with machine learning techniques provides a rapid method for breast cancer analysis able to reveal differences in intracellular compositions and molecular structures among subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真安完成签到 ,获得积分10
3秒前
aabbfz发布了新的文献求助10
3秒前
7秒前
HeLL0完成签到 ,获得积分10
9秒前
欣喜石头完成签到 ,获得积分10
10秒前
酷波er应助急雪回风采纳,获得10
13秒前
松子儿hhh完成签到,获得积分10
16秒前
18秒前
吴嘉俊完成签到 ,获得积分10
22秒前
万能的悲剧完成签到 ,获得积分10
28秒前
仁爱的凡波完成签到,获得积分10
29秒前
Charlie完成签到 ,获得积分10
37秒前
38秒前
涛老三完成签到 ,获得积分10
40秒前
42秒前
常绝山完成签到 ,获得积分10
43秒前
43秒前
月亮完成签到 ,获得积分10
43秒前
平淡灭绝发布了新的文献求助10
44秒前
zhong完成签到 ,获得积分10
45秒前
SCI完成签到,获得积分10
46秒前
XFaning发布了新的文献求助10
48秒前
急雪回风发布了新的文献求助10
49秒前
白瓜完成签到 ,获得积分10
59秒前
AMENG完成签到,获得积分10
1分钟前
Ldq完成签到 ,获得积分10
1分钟前
姚琛完成签到 ,获得积分10
1分钟前
平淡灭绝完成签到 ,获得积分10
1分钟前
XFaning发布了新的文献求助10
1分钟前
Foxjker完成签到 ,获得积分10
1分钟前
迷路的八宝粥完成签到,获得积分10
1分钟前
虞美人发布了新的文献求助10
1分钟前
1分钟前
Micheal完成签到 ,获得积分10
1分钟前
yueeoor完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
利好完成签到 ,获得积分10
1分钟前
G1997完成签到 ,获得积分10
1分钟前
CodeCraft应助友好听云采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968199
求助须知:如何正确求助?哪些是违规求助? 3513215
关于积分的说明 11166782
捐赠科研通 3248448
什么是DOI,文献DOI怎么找? 1794246
邀请新用户注册赠送积分活动 874950
科研通“疑难数据库(出版商)”最低求助积分说明 804629