已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement learning with artificial microswimmers

生命系统 强化学习 过程(计算) 计算机科学 人工生命 仿生学 集体行为 人工智能 人类学 操作系统 社会学
作者
Santiago Muíños-Landín,Alexander Fischer,Viktor Holubec,Frank Cichos
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:6 (52) 被引量:123
标识
DOI:10.1126/scirobotics.abd9285
摘要

The behavior of living systems is based on the experience they gained through their interactions with the environment [1]. This experience is stored in the complex biochemical networks of cells and organisms to provide a relationship between a sensed situation and what to do in this situation [2-4]. An implementation of such processes in artificial systems has been achieved through different machine learning algorithms [5, 6]. However, for microscopic systems such as artificial microswimmers which mimic propulsion as one of the basic functionalities of living systems [7, 8] such adaptive behavior and learning processes have not been implemented so far. Here we introduce machine learning algorithms to the motion of artificial microswimmers with a hybrid approach. We employ self-thermophoretic artificial microswimmers in a real world environment [9, 10] which are controlled by a real-time microscopy system to introduce reinforcement learning [11-13]. We demonstrate the solution of a standard problem of reinforcement learning - the navigation in a grid world. Due to the size of the microswimmer, noise introduced by Brownian motion if found to contribute considerably to both the learning process and the actions within a learned behavior. We extend the learning process to multiple swimmers and sharing of information. Our work represents a first step towards the integration of learning strategies into microsystems and provides a platform for the study of the emergence of adaptive and collective behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
iorpi发布了新的文献求助10
2秒前
科研通AI2S应助24先生采纳,获得10
3秒前
3秒前
3秒前
不知终日梦为鱼完成签到,获得积分10
4秒前
7秒前
9秒前
舒心安柏完成签到 ,获得积分10
11秒前
苏宗旭发布了新的文献求助10
13秒前
zw完成签到 ,获得积分10
14秒前
14秒前
Jasper应助Jenny采纳,获得10
17秒前
17秒前
discoveryTest完成签到,获得积分10
18秒前
19秒前
kuikui完成签到 ,获得积分10
20秒前
香蕉觅云应助甜甜的不二采纳,获得10
21秒前
21秒前
24先生发布了新的文献求助10
24秒前
25秒前
星辰大海应助科研通管家采纳,获得10
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
英吉利25发布了新的文献求助10
26秒前
小二郎应助科研通管家采纳,获得10
26秒前
尹梦成应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得30
26秒前
浮游应助科研通管家采纳,获得10
26秒前
情怀应助halo采纳,获得10
26秒前
思源应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
26秒前
今后应助科研通管家采纳,获得10
26秒前
27秒前
28秒前
浮游应助balko采纳,获得10
29秒前
30秒前
甜甜完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300957
求助须知:如何正确求助?哪些是违规求助? 4448753
关于积分的说明 13846748
捐赠科研通 4334559
什么是DOI,文献DOI怎么找? 2379746
邀请新用户注册赠送积分活动 1374804
关于科研通互助平台的介绍 1340516