Reinforcement learning with artificial microswimmers

生命系统 强化学习 过程(计算) 计算机科学 人工生命 仿生学 集体行为 人工智能 操作系统 人类学 社会学
作者
Santiago Muíños-Landín,Alexander Fischer,Viktor Holubec,Frank Cichos
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:6 (52) 被引量:123
标识
DOI:10.1126/scirobotics.abd9285
摘要

The behavior of living systems is based on the experience they gained through their interactions with the environment [1]. This experience is stored in the complex biochemical networks of cells and organisms to provide a relationship between a sensed situation and what to do in this situation [2-4]. An implementation of such processes in artificial systems has been achieved through different machine learning algorithms [5, 6]. However, for microscopic systems such as artificial microswimmers which mimic propulsion as one of the basic functionalities of living systems [7, 8] such adaptive behavior and learning processes have not been implemented so far. Here we introduce machine learning algorithms to the motion of artificial microswimmers with a hybrid approach. We employ self-thermophoretic artificial microswimmers in a real world environment [9, 10] which are controlled by a real-time microscopy system to introduce reinforcement learning [11-13]. We demonstrate the solution of a standard problem of reinforcement learning - the navigation in a grid world. Due to the size of the microswimmer, noise introduced by Brownian motion if found to contribute considerably to both the learning process and the actions within a learned behavior. We extend the learning process to multiple swimmers and sharing of information. Our work represents a first step towards the integration of learning strategies into microsystems and provides a platform for the study of the emergence of adaptive and collective behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sue402完成签到,获得积分10
刚刚
彭于晏应助壮观的白枫采纳,获得10
1秒前
翔哥完成签到,获得积分10
1秒前
cc完成签到,获得积分10
1秒前
XZZH完成签到,获得积分10
1秒前
丘比特应助葛怀锐采纳,获得30
2秒前
2秒前
2秒前
勿奈何完成签到,获得积分10
2秒前
鱼柒完成签到 ,获得积分10
3秒前
读不完的文献啊完成签到,获得积分10
3秒前
犹豫小蚂蚁完成签到,获得积分10
3秒前
辛勤谷雪发布了新的文献求助10
3秒前
purplelove完成签到 ,获得积分10
3秒前
zp发布了新的文献求助10
3秒前
123完成签到 ,获得积分10
4秒前
4秒前
典雅问寒应助ATM采纳,获得10
4秒前
xyzhang发布了新的文献求助10
5秒前
7秒前
7秒前
wanci应助欢喜的酒窝采纳,获得10
8秒前
纯情的馒头完成签到,获得积分10
8秒前
小巧的映易完成签到,获得积分10
8秒前
唱跳双c发布了新的文献求助10
8秒前
二师兄完成签到,获得积分10
8秒前
8秒前
chchjust完成签到,获得积分10
8秒前
机灵的鸣凤完成签到,获得积分10
9秒前
meidoudou完成签到,获得积分10
9秒前
XJX发布了新的文献求助30
10秒前
10秒前
无际的星空下完成签到,获得积分10
11秒前
caicai应助kk采纳,获得10
11秒前
积极的蘑菇完成签到 ,获得积分10
11秒前
12秒前
12秒前
云淡风轻发布了新的文献求助10
12秒前
只如初完成签到,获得积分10
13秒前
JT完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700765
求助须知:如何正确求助?哪些是违规求助? 3251047
关于积分的说明 9872817
捐赠科研通 2963115
什么是DOI,文献DOI怎么找? 1624972
邀请新用户注册赠送积分活动 769625
科研通“疑难数据库(出版商)”最低求助积分说明 742423