亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement learning with artificial microswimmers

生命系统 强化学习 过程(计算) 计算机科学 人工生命 仿生学 集体行为 人工智能 人类学 操作系统 社会学
作者
Santiago Muíños-Landín,Alexander Fischer,Viktor Holubec,Frank Cichos
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:6 (52) 被引量:123
标识
DOI:10.1126/scirobotics.abd9285
摘要

The behavior of living systems is based on the experience they gained through their interactions with the environment [1]. This experience is stored in the complex biochemical networks of cells and organisms to provide a relationship between a sensed situation and what to do in this situation [2-4]. An implementation of such processes in artificial systems has been achieved through different machine learning algorithms [5, 6]. However, for microscopic systems such as artificial microswimmers which mimic propulsion as one of the basic functionalities of living systems [7, 8] such adaptive behavior and learning processes have not been implemented so far. Here we introduce machine learning algorithms to the motion of artificial microswimmers with a hybrid approach. We employ self-thermophoretic artificial microswimmers in a real world environment [9, 10] which are controlled by a real-time microscopy system to introduce reinforcement learning [11-13]. We demonstrate the solution of a standard problem of reinforcement learning - the navigation in a grid world. Due to the size of the microswimmer, noise introduced by Brownian motion if found to contribute considerably to both the learning process and the actions within a learned behavior. We extend the learning process to multiple swimmers and sharing of information. Our work represents a first step towards the integration of learning strategies into microsystems and provides a platform for the study of the emergence of adaptive and collective behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
fsznc1完成签到 ,获得积分0
37秒前
情怀应助孙孙采纳,获得10
49秒前
滕皓轩完成签到 ,获得积分20
1分钟前
1分钟前
孙孙发布了新的文献求助10
1分钟前
彭于晏应助蒙豆儿采纳,获得30
2分钟前
2分钟前
蒙豆儿发布了新的文献求助30
2分钟前
依然灬聆听完成签到,获得积分10
2分钟前
Z可完成签到,获得积分10
2分钟前
科研通AI2S应助pxy采纳,获得10
3分钟前
orixero应助袁青寒采纳,获得10
3分钟前
4分钟前
4分钟前
英姑应助科研通管家采纳,获得10
4分钟前
6分钟前
嘻嘻完成签到,获得积分10
6分钟前
abc完成签到 ,获得积分10
7分钟前
lixuebin完成签到 ,获得积分10
8分钟前
NexusExplorer应助狂奔弟弟采纳,获得10
8分钟前
8分钟前
狂奔弟弟发布了新的文献求助10
8分钟前
狂奔弟弟完成签到,获得积分10
9分钟前
a61完成签到,获得积分10
9分钟前
9分钟前
zsc发布了新的文献求助10
9分钟前
HYQ完成签到 ,获得积分10
10分钟前
MchemG完成签到,获得积分0
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
Ava应助科研通管家采纳,获得10
10分钟前
沐雨微寒完成签到,获得积分10
11分钟前
科研通AI6应助马良采纳,获得10
11分钟前
科研通AI2S应助hairgod采纳,获得10
12分钟前
hairgod完成签到,获得积分10
12分钟前
Jasper应助科研通管家采纳,获得10
12分钟前
13分钟前
马良发布了新的文献求助10
13分钟前
科研通AI5应助马良采纳,获得10
14分钟前
bkagyin应助狂奔弟弟采纳,获得10
14分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582292
求助须知:如何正确求助?哪些是违规求助? 4000077
关于积分的说明 12382091
捐赠科研通 3674945
什么是DOI,文献DOI怎么找? 2025541
邀请新用户注册赠送积分活动 1059261
科研通“疑难数据库(出版商)”最低求助积分说明 945875