亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease

冠状动脉疾病 计算机辅助设计 医学 接收机工作特性 曲线下面积 心肌灌注成像 灌注 单光子发射计算机断层摄影术 心脏病学 内科学 放射科 核医学 工程类 工程制图
作者
Yuka Otaki,Ananya Singh,Paul Kavanagh,Robert J.H. Miller,Tejas Parekh,Balaji Tamarappoo,Tali Sharir,Andrew J. Einstein,Mathews B. Fish,Terrence D. Ruddy,Philipp A. Kaufmann,Albert J. Sinusas,Edward J. Miller,Timothy M. Bateman,Sharmila Dorbala,Marcelo Di Carli,Sebastien Cadet,Joanna X. Liang,Damini Dey,Daniel S. Berman,Piotr J. Slomka
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:15 (6): 1091-1102 被引量:58
标识
DOI:10.1016/j.jcmg.2021.04.030
摘要

Explainable artificial intelligence (AI) can be integrated within standard clinical software to facilitate the acceptance of the diagnostic findings during clinical interpretation.This study sought to develop and evaluate a novel, general purpose, explainable deep learning model (coronary artery disease-deep learning [CAD-DL]) for the detection of obstructive CAD following single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI).A total of 3,578 patients with suspected CAD undergoing SPECT MPI and invasive coronary angiography within a 6-month interval from 9 centers were studied. CAD-DL computes the probability of obstructive CAD from stress myocardial perfusion, wall motion, and wall thickening maps, as well as left ventricular volumes, age, and sex. Myocardial regions contributing to the CAD-DL prediction are highlighted to explain the findings to the physician. A clinical prototype was integrated using a standard clinical workstation. Diagnostic performance by CAD-DL was compared to automated quantitative total perfusion deficit (TPD) and reader diagnosis.In total, 2,247 patients (63%) had obstructive CAD. In 10-fold repeated testing, the area under the receiver-operating characteristic curve (AUC) (95% CI) was higher according to CAD-DL (AUC: 0.83 [95% CI: 0.82-0.85]) than stress TPD (AUC: 0.78 [95% CI: 0.77-0.80]) or reader diagnosis (AUC: 0.71 [95% CI: 0.69-0.72]; P < 0.0001 for both). In external testing, the AUC in 555 patients was higher according to CAD-DL (AUC: 0.80 [95% CI: 0.76-0.84]) than stress TPD (AUC: 0.73 [95% CI: 0.69-0.77]) or reader diagnosis (AUC: 0.65 [95% CI: 0.61-0.69]; P < 0.001 for all). The present model can be integrated within standard clinical software and generates results rapidly (<12 seconds on a standard clinical workstation) and therefore could readily be incorporated into a typical clinical workflow.The deep-learning model significantly surpasses the diagnostic accuracy of standard quantitative analysis and clinical visual reading for MPI. Explainable artificial intelligence can be integrated within standard clinical software to facilitate acceptance of artificial intelligence diagnosis of CAD following MPI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重庆森林完成签到,获得积分10
6秒前
小榕树完成签到,获得积分10
19秒前
30秒前
shuang完成签到 ,获得积分10
31秒前
33秒前
Cmqq发布了新的文献求助10
34秒前
孔踏歌发布了新的文献求助10
38秒前
所所应助Cmqq采纳,获得10
40秒前
TwentyNine发布了新的文献求助20
45秒前
kryptonite完成签到 ,获得积分10
47秒前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
无韶的月亮树完成签到 ,获得积分10
1分钟前
852应助林迁采纳,获得10
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
TwentyNine完成签到,获得积分10
1分钟前
1分钟前
李健的小迷弟应助Cmqq采纳,获得10
1分钟前
bai完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
林迁发布了新的文献求助10
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
起风了完成签到 ,获得积分10
2分钟前
billevans完成签到,获得积分10
3分钟前
传奇3应助薄荷采纳,获得10
3分钟前
Cmqq发布了新的文献求助10
3分钟前
jjjj完成签到,获得积分10
3分钟前
孔踏歌完成签到,获得积分10
3分钟前
水木子尔完成签到,获得积分10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
Hayat应助ceeray23采纳,获得20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685513
关于积分的说明 14838543
捐赠科研通 4670625
什么是DOI,文献DOI怎么找? 2538207
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904