Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease

冠状动脉疾病 计算机辅助设计 医学 接收机工作特性 曲线下面积 心肌灌注成像 灌注 单光子发射计算机断层摄影术 心脏病学 内科学 放射科 核医学 工程类 工程制图
作者
Yuka Otaki,Ananya Singh,Paul Kavanagh,Robert J.H. Miller,Tejas Parekh,Balaji Tamarappoo,Tali Sharir,Andrew J. Einstein,Mathews B. Fish,Terrence D. Ruddy,Philipp A. Kaufmann,Albert J. Sinusas,Edward J. Miller,Timothy M. Bateman,Sharmila Dorbala,Marcelo Di Carli,Sebastien Cadet,Joanna X. Liang,Damini Dey,Daniel S. Berman,Piotr J. Slomka
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:15 (6): 1091-1102 被引量:58
标识
DOI:10.1016/j.jcmg.2021.04.030
摘要

Explainable artificial intelligence (AI) can be integrated within standard clinical software to facilitate the acceptance of the diagnostic findings during clinical interpretation.This study sought to develop and evaluate a novel, general purpose, explainable deep learning model (coronary artery disease-deep learning [CAD-DL]) for the detection of obstructive CAD following single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI).A total of 3,578 patients with suspected CAD undergoing SPECT MPI and invasive coronary angiography within a 6-month interval from 9 centers were studied. CAD-DL computes the probability of obstructive CAD from stress myocardial perfusion, wall motion, and wall thickening maps, as well as left ventricular volumes, age, and sex. Myocardial regions contributing to the CAD-DL prediction are highlighted to explain the findings to the physician. A clinical prototype was integrated using a standard clinical workstation. Diagnostic performance by CAD-DL was compared to automated quantitative total perfusion deficit (TPD) and reader diagnosis.In total, 2,247 patients (63%) had obstructive CAD. In 10-fold repeated testing, the area under the receiver-operating characteristic curve (AUC) (95% CI) was higher according to CAD-DL (AUC: 0.83 [95% CI: 0.82-0.85]) than stress TPD (AUC: 0.78 [95% CI: 0.77-0.80]) or reader diagnosis (AUC: 0.71 [95% CI: 0.69-0.72]; P < 0.0001 for both). In external testing, the AUC in 555 patients was higher according to CAD-DL (AUC: 0.80 [95% CI: 0.76-0.84]) than stress TPD (AUC: 0.73 [95% CI: 0.69-0.77]) or reader diagnosis (AUC: 0.65 [95% CI: 0.61-0.69]; P < 0.001 for all). The present model can be integrated within standard clinical software and generates results rapidly (<12 seconds on a standard clinical workstation) and therefore could readily be incorporated into a typical clinical workflow.The deep-learning model significantly surpasses the diagnostic accuracy of standard quantitative analysis and clinical visual reading for MPI. Explainable artificial intelligence can be integrated within standard clinical software to facilitate acceptance of artificial intelligence diagnosis of CAD following MPI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly给zyr的求助进行了留言
1秒前
酷波er应助momo采纳,获得10
1秒前
君君发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
静翕完成签到 ,获得积分10
2秒前
3秒前
yinjq777完成签到,获得积分10
4秒前
4秒前
鄂惜霜发布了新的文献求助10
4秒前
高高芷完成签到 ,获得积分10
4秒前
4秒前
liuyue完成签到,获得积分10
4秒前
JamesPei应助图图采纳,获得10
5秒前
5秒前
华仔应助LILI采纳,获得30
5秒前
6秒前
for_abSCI完成签到,获得积分10
6秒前
珊珊发布了新的文献求助10
6秒前
6秒前
6秒前
CG发布了新的文献求助10
6秒前
柴六斤发布了新的文献求助10
7秒前
balabala发布了新的文献求助10
8秒前
科研通AI5应助番西茄采纳,获得10
8秒前
8秒前
科研通AI6应助yfjia采纳,获得10
8秒前
9秒前
薛华倩发布了新的文献求助10
9秒前
小小完成签到 ,获得积分10
9秒前
10秒前
魏佳阁举报ydoyate求助涉嫌违规
10秒前
洒脱完成签到,获得积分10
10秒前
曾家钰完成签到 ,获得积分20
11秒前
小蘑菇应助WNL采纳,获得10
11秒前
11秒前
传奇3应助可爱的妙海采纳,获得10
11秒前
12秒前
土豆小姐的土豆泥儿完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5002232
求助须知:如何正确求助?哪些是违规求助? 4247341
关于积分的说明 13232693
捐赠科研通 4046224
什么是DOI,文献DOI怎么找? 2213497
邀请新用户注册赠送积分活动 1223569
关于科研通互助平台的介绍 1143899