Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease

冠状动脉疾病 计算机辅助设计 医学 接收机工作特性 曲线下面积 心肌灌注成像 灌注 单光子发射计算机断层摄影术 心脏病学 内科学 放射科 核医学 工程类 工程制图
作者
Yuka Otaki,Ananya Singh,Paul Kavanagh,Robert J.H. Miller,Tejas Parekh,Balaji Tamarappoo,Tali Sharir,Andrew J. Einstein,Mathews B. Fish,Terrence D. Ruddy,Philipp A. Kaufmann,Albert J. Sinusas,Edward J. Miller,Timothy M. Bateman,Sharmila Dorbala,Marcelo Di Carli,Sebastien Cadet,Joanna X. Liang,Damini Dey,Daniel S. Berman,Piotr J. Slomka
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:15 (6): 1091-1102 被引量:58
标识
DOI:10.1016/j.jcmg.2021.04.030
摘要

Explainable artificial intelligence (AI) can be integrated within standard clinical software to facilitate the acceptance of the diagnostic findings during clinical interpretation.This study sought to develop and evaluate a novel, general purpose, explainable deep learning model (coronary artery disease-deep learning [CAD-DL]) for the detection of obstructive CAD following single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI).A total of 3,578 patients with suspected CAD undergoing SPECT MPI and invasive coronary angiography within a 6-month interval from 9 centers were studied. CAD-DL computes the probability of obstructive CAD from stress myocardial perfusion, wall motion, and wall thickening maps, as well as left ventricular volumes, age, and sex. Myocardial regions contributing to the CAD-DL prediction are highlighted to explain the findings to the physician. A clinical prototype was integrated using a standard clinical workstation. Diagnostic performance by CAD-DL was compared to automated quantitative total perfusion deficit (TPD) and reader diagnosis.In total, 2,247 patients (63%) had obstructive CAD. In 10-fold repeated testing, the area under the receiver-operating characteristic curve (AUC) (95% CI) was higher according to CAD-DL (AUC: 0.83 [95% CI: 0.82-0.85]) than stress TPD (AUC: 0.78 [95% CI: 0.77-0.80]) or reader diagnosis (AUC: 0.71 [95% CI: 0.69-0.72]; P < 0.0001 for both). In external testing, the AUC in 555 patients was higher according to CAD-DL (AUC: 0.80 [95% CI: 0.76-0.84]) than stress TPD (AUC: 0.73 [95% CI: 0.69-0.77]) or reader diagnosis (AUC: 0.65 [95% CI: 0.61-0.69]; P < 0.001 for all). The present model can be integrated within standard clinical software and generates results rapidly (<12 seconds on a standard clinical workstation) and therefore could readily be incorporated into a typical clinical workflow.The deep-learning model significantly surpasses the diagnostic accuracy of standard quantitative analysis and clinical visual reading for MPI. Explainable artificial intelligence can be integrated within standard clinical software to facilitate acceptance of artificial intelligence diagnosis of CAD following MPI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助路路采纳,获得10
1秒前
海棠121完成签到,获得积分20
1秒前
1秒前
123456发布了新的文献求助10
2秒前
2秒前
2秒前
断路天行完成签到,获得积分10
3秒前
善良绿兰发布了新的文献求助30
4秒前
祁轩完成签到,获得积分10
4秒前
4秒前
科研通AI6应助ym采纳,获得20
5秒前
5秒前
代代完成签到,获得积分10
5秒前
关我屁事完成签到 ,获得积分10
5秒前
酷炫半蕾发布了新的文献求助10
6秒前
6秒前
FashionBoy应助漂亮的孤风采纳,获得10
6秒前
电灯胆关注了科研通微信公众号
7秒前
Joker发布了新的文献求助10
7秒前
从容不乐发布了新的文献求助20
7秒前
英俊的铭应助lienafeihu采纳,获得10
7秒前
dreamboat发布了新的文献求助10
7秒前
7秒前
zz完成签到,获得积分10
7秒前
MCQ发布了新的文献求助20
7秒前
7秒前
天天快乐应助congyjs采纳,获得10
8秒前
朴实珍应助芒果采纳,获得20
8秒前
8秒前
Hello应助犬狗狗采纳,获得10
8秒前
shen发布了新的文献求助10
9秒前
研友_LNVX1L完成签到,获得积分10
9秒前
小肥羊完成签到 ,获得积分10
9秒前
xxfsx应助maaicui采纳,获得10
10秒前
毛毛弟完成签到 ,获得积分10
10秒前
解语花发布了新的文献求助150
11秒前
kinoko完成签到,获得积分10
11秒前
11秒前
陈宇通发布了新的文献求助10
12秒前
xchi发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5168225
求助须知:如何正确求助?哪些是违规求助? 4359995
关于积分的说明 13574748
捐赠科研通 4206589
什么是DOI,文献DOI怎么找? 2307028
邀请新用户注册赠送积分活动 1306622
关于科研通互助平台的介绍 1253263