Highlighting psychological pain avoidance and decision‐making bias as key predictors of suicide attempt in major depressive disorder—A novel investigative approach using machine learning

心理学 逻辑回归 自杀未遂 临床心理学 毒物控制 自杀预防 重性抑郁障碍 自杀意念 精神科 医学 心情 医疗急救 内科学
作者
Xinlei Ji,Jiahui Zhao,Lejia Fan,Huanhuan Li,Pan Lin,Panwen Zhang,Shulin Fang,Syk Law,Shuqiao Yao,Xiang Wang
出处
期刊:Journal of Clinical Psychology [Wiley]
卷期号:78 (4): 671-691 被引量:11
标识
DOI:10.1002/jclp.23246
摘要

Predicting suicide is notoriously difficult and complex, but a serious public health issue. An innovative approach utilizing machine learning (ML) that incorporates features of psychological mechanisms and decision-making characteristics related to suicidality could create an improved model for identifying suicide risk in patients with major depressive disorder (MDD).Forty-four patients with MDD and past suicide attempts (MDD_SA, N = 44); 48 patients with MDD but without past suicide attempts (MDD_NS, N = 48-42 of whom with suicide ideation [MDD_SI, N = 42]), and healthy controls (HCs, N = 51) completed seven psychometric assessments including the Three-dimensional Psychological Pain Scale (TDPPS), and one behavioral assessment, the Balloon Analogue Risk Task (BART). Descriptive statistics, group comparisons, logistic regressions, and ML were used to explore and compare the groups and generate predictors of suicidal acts.MDD_SA and MDD_NS differed in TDPPS total score, pain arousal and avoidance subscale scores, suicidal ideation scores, and relevant decision-making indicators in BART. Logistic regression tests linked suicide attempts to psychological pain avoidance and a risk decision-making indicator. The resultant key ML model distinguished MDD_SA/MDD_NS with 88.2% accuracy. The model could also distinguish MDD_SA/MDD_SI with 81.25% accuracy. The ML model using hopelessness could classify MDD_SI/HC with 94.4% accuracy.ML analyses showed that motivation to avoid intolerable psychological pain, coupled with impaired decision-making bias toward under-valuing life's worth are highly predictive of suicide attempts. Analyses also demonstrated that suicidal ideation and attempts differed in potential mechanisms, as suicidal ideation was more related to hopelessness. ML algorithms show useful promises as a predictive instrument.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助逃亡的小狗采纳,获得10
1秒前
山月完成签到 ,获得积分10
1秒前
努力发布了新的文献求助10
5秒前
5秒前
LLL发布了新的文献求助10
9秒前
666完成签到 ,获得积分10
11秒前
Umwandlung完成签到,获得积分10
12秒前
hhhhh完成签到,获得积分10
12秒前
工科女博士应助东北三省采纳,获得10
13秒前
16秒前
迷路的手机完成签到 ,获得积分10
16秒前
贾克斯发布了新的文献求助10
20秒前
20秒前
20秒前
十二月的尾巴完成签到,获得积分10
22秒前
逃学威龙发布了新的文献求助10
23秒前
24秒前
24秒前
26秒前
突突突完成签到,获得积分10
26秒前
rangergzz完成签到 ,获得积分10
28秒前
小晓晓完成签到,获得积分10
29秒前
yu完成签到,获得积分10
29秒前
大胆洋葱完成签到,获得积分10
29秒前
王博士完成签到,获得积分10
30秒前
小乌龟发布了新的文献求助10
30秒前
30秒前
KimTran应助过于喧嚣的孤独采纳,获得10
31秒前
羊羊羊完成签到,获得积分10
31秒前
柳听白给柳听白的求助进行了留言
32秒前
32秒前
32秒前
kkdkg发布了新的文献求助10
34秒前
gauri完成签到,获得积分10
34秒前
zb发布了新的文献求助10
36秒前
长情凌翠完成签到,获得积分10
37秒前
犹豫山河发布了新的文献求助10
37秒前
KimTran应助过于喧嚣的孤独采纳,获得10
43秒前
zb完成签到,获得积分10
44秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151919
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852576
捐赠科研通 2460608
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629070
版权声明 601760