SSRNet: In-Field Counting Wheat Ears Using Multi-Stage Convolutional Neural Network

卷积神经网络 模式识别(心理学) 人工智能 计算机科学 人工神经网络 分割 图像分割 均方误差 领域(数学) 数学 统计 纯数学
作者
Daoyong Wang,Dongyan Zhang,Guijun Yang,Bo Xu,Yaowu Luo,Xiaodong Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:44
标识
DOI:10.1109/tgrs.2021.3093041
摘要

Fast and accurate counting of wheat ears in field conditions is a key element for determining wheat yield. To obtain the number of wheat ears in a field, we propose a new counting algorithm based on computer vision. This algorithm counts wheat ears in remote images through semantic segmentation regression network (SSRNet). SSRNet is a multistage convolutional neural network that we propose to achieve counting problems through regression. In SSRNet, first, the original image is cropped to increase the amount of data. This method effectively solves the small sample dataset. Next, based on the cropping results, we build a fully convolutional neural network (FCNN) to segment wheat ears in field conditions. FCNN increases the accuracy of wheat ears counting by accurately segmenting wheat ears in a complex background. Then, we build a regression convolutional neural network (RCNN) to count wheat ears based on the segmentation results of FCNN. In RCNN, we propose a new activation function positive rectification linear unit (PrLU) to process the last layer of the fully connected layer, so that RCNN can effectively count the number of wheat ears in the image. Finally, a counting strategy is proposed to count the number of wheat ears in the original image. To verify the counting performance of SSRNet, we compare the counting result of SSRNet with the real value of manual statistics. The results show that the average accuracy (Acc), $R^{2}$ , and root mean squared error (RMSE) of the SSRNet count results on the test set in this article are 0.980, 0.996, and 9.437, respectively. It can be seen from the results that our proposed method can accurately count wheat ears in field conditions. At the same time, the counting time (0.11 s) shows that SSRNet can quickly estimate the number of wheat ears in field conditions. We concluded that this study can provide important technical support for the high-throughput field wheat ears counting task in large-scale phenotyping work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
lucky发布了新的文献求助20
刚刚
飘逸抽屉完成签到,获得积分10
1秒前
1秒前
某某发布了新的文献求助10
2秒前
斯文败类应助熬夜肝文献采纳,获得10
3秒前
3秒前
脑洞疼应助暮然采纳,获得10
3秒前
3秒前
图图完成签到,获得积分10
4秒前
开朗的鞋子完成签到,获得积分10
4秒前
坚强的蚂蚁完成签到,获得积分10
4秒前
专注的轻发布了新的文献求助10
6秒前
Mengke发布了新的文献求助10
7秒前
HP发布了新的文献求助10
7秒前
young完成签到,获得积分10
7秒前
自建完成签到,获得积分10
8秒前
9秒前
Icecream发布了新的文献求助20
10秒前
123完成签到,获得积分10
10秒前
monster完成签到 ,获得积分10
11秒前
zhuangxin完成签到,获得积分10
12秒前
傻傻的野狼关注了科研通微信公众号
12秒前
回复对方完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
暮然发布了新的文献求助10
15秒前
tang完成签到,获得积分10
17秒前
狐狐发布了新的文献求助10
20秒前
狗宅发布了新的文献求助10
20秒前
21秒前
xingkun完成签到,获得积分10
21秒前
lu完成签到 ,获得积分10
21秒前
22秒前
22秒前
23秒前
阿欢完成签到,获得积分20
23秒前
香蕉觅云应助浮游窥天采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259194
求助须知:如何正确求助?哪些是违规求助? 4420930
关于积分的说明 13761428
捐赠科研通 4294692
什么是DOI,文献DOI怎么找? 2356531
邀请新用户注册赠送积分活动 1352944
关于科研通互助平台的介绍 1313859