SSRNet: In-Field Counting Wheat Ears Using Multi-Stage Convolutional Neural Network

卷积神经网络 模式识别(心理学) 人工智能 计算机科学 人工神经网络 分割 图像分割 均方误差 领域(数学) 数学 统计 纯数学
作者
Daoyong Wang,Dongyan Zhang,Guijun Yang,Bo Xu,Yaowu Luo,Xiaodong Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:38
标识
DOI:10.1109/tgrs.2021.3093041
摘要

Fast and accurate counting of wheat ears in field conditions is a key element for determining wheat yield. To obtain the number of wheat ears in a field, we propose a new counting algorithm based on computer vision. This algorithm counts wheat ears in remote images through semantic segmentation regression network (SSRNet). SSRNet is a multistage convolutional neural network that we propose to achieve counting problems through regression. In SSRNet, first, the original image is cropped to increase the amount of data. This method effectively solves the small sample dataset. Next, based on the cropping results, we build a fully convolutional neural network (FCNN) to segment wheat ears in field conditions. FCNN increases the accuracy of wheat ears counting by accurately segmenting wheat ears in a complex background. Then, we build a regression convolutional neural network (RCNN) to count wheat ears based on the segmentation results of FCNN. In RCNN, we propose a new activation function positive rectification linear unit (PrLU) to process the last layer of the fully connected layer, so that RCNN can effectively count the number of wheat ears in the image. Finally, a counting strategy is proposed to count the number of wheat ears in the original image. To verify the counting performance of SSRNet, we compare the counting result of SSRNet with the real value of manual statistics. The results show that the average accuracy (Acc), $R^{2}$ , and root mean squared error (RMSE) of the SSRNet count results on the test set in this article are 0.980, 0.996, and 9.437, respectively. It can be seen from the results that our proposed method can accurately count wheat ears in field conditions. At the same time, the counting time (0.11 s) shows that SSRNet can quickly estimate the number of wheat ears in field conditions. We concluded that this study can provide important technical support for the high-throughput field wheat ears counting task in large-scale phenotyping work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
HJ驳回了华仔应助
3秒前
Hello应助皮皮卡采纳,获得10
3秒前
5秒前
5秒前
Zz发布了新的文献求助10
9秒前
欧阳铭发布了新的文献求助10
10秒前
油条完成签到,获得积分10
10秒前
11秒前
11秒前
念初完成签到 ,获得积分10
12秒前
fangting完成签到,获得积分20
12秒前
卡萨卡萨完成签到,获得积分10
14秒前
15秒前
dreamboat完成签到,获得积分10
16秒前
zihanwang应助Kiki采纳,获得30
16秒前
研友_VZG7GZ应助见闻采纳,获得10
17秒前
xxy完成签到,获得积分10
17秒前
ZJU完成签到,获得积分10
17秒前
知意完成签到,获得积分10
18秒前
1q完成签到,获得积分10
18秒前
酸奶巧克力完成签到,获得积分10
18秒前
萝卜不困完成签到 ,获得积分10
19秒前
霸气小蜜蜂完成签到 ,获得积分10
19秒前
寒生完成签到,获得积分10
20秒前
wang给wang的求助进行了留言
21秒前
21秒前
皮皮卡发布了新的文献求助10
22秒前
林宥嘉完成签到 ,获得积分10
22秒前
所所应助思维隋采纳,获得10
26秒前
27秒前
落寞凌波应助灵泽采纳,获得30
27秒前
27秒前
大模型应助爱听歌的书本采纳,获得10
28秒前
31秒前
Liufgui应助do0采纳,获得10
32秒前
细腻灯泡发布了新的文献求助10
33秒前
顺利毕业发布了新的文献求助10
33秒前
34秒前
Jasper应助XiaodongWang采纳,获得10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998871
求助须知:如何正确求助?哪些是违规求助? 3538355
关于积分的说明 11273977
捐赠科研通 3277299
什么是DOI,文献DOI怎么找? 1807509
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075