Plug-and-Play Algorithms for Video Snapshot Compressive Imaging

计算机科学 快照(计算机存储) 人工智能 计算机视觉 压缩传感 算法 迭代重建 加速 操作系统
作者
Xin Yuan,Yang Liu,Jinli Suo,Frédo Durand,Qionghai Dai
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (10): 7093-7111 被引量:73
标识
DOI:10.1109/tpami.2021.3099035
摘要

We consider the reconstruction problem of video snapshot compressive imaging (SCI), which captures high-speed videos using a low-speed 2D sensor (detector). The underlying principle of SCI is to modulate sequential high-speed frames with different masks and then these encoded frames are integrated into a snapshot on the sensor and thus the sensor can be of low-speed. On one hand, video SCI enjoys the advantages of low-bandwidth, low-power and low-cost. On the other hand, applying SCI to large-scale problems (HD or UHD videos) in our daily life is still challenging and one of the bottlenecks lies in the reconstruction algorithm. Existing algorithms are either too slow (iterative optimization algorithms) or not flexible to the encoding process (deep learning based end-to-end networks). In this paper, we develop fast and flexible algorithms for SCI based on the plug-and-play (PnP) framework. In addition to the PnP-ADMM method, we further propose the PnP-GAP (generalized alternating projection) algorithm with a lower computational workload. We first employ the image deep denoising priors to show that PnP can recover a UHD color video with 30 frames from a snapshot measurement. Since videos have strong temporal correlation, by employing the video deep denoising priors, we achieve a significant improvement in the results. Furthermore, we extend the proposed PnP algorithms to the color SCI system using mosaic sensors, where each pixel only captures the red, green or blue channels. A joint reconstruction and demosaicing paradigm is developed for flexible and high quality reconstruction of color video SCI systems. Extensive results on both simulation and real datasets verify the superiority of our proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐的大开应助JimmyY采纳,获得10
刚刚
甜宝完成签到 ,获得积分10
1秒前
1秒前
rendong4009发布了新的文献求助10
2秒前
2秒前
Lin发布了新的文献求助10
2秒前
尉迟怜翠发布了新的文献求助10
2秒前
4秒前
qianqian完成签到,获得积分10
4秒前
sun发布了新的文献求助10
4秒前
4秒前
jevon应助JimmyY采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
Yaslynn完成签到,获得积分10
7秒前
cxy发布了新的文献求助10
7秒前
8秒前
111222完成签到,获得积分20
8秒前
eternal发布了新的文献求助10
8秒前
蓝色芒果完成签到,获得积分10
9秒前
SASA完成签到,获得积分10
10秒前
摆烂昊完成签到,获得积分20
10秒前
10秒前
10秒前
迷路问玉完成签到,获得积分20
11秒前
11秒前
哈哈呀完成签到 ,获得积分10
11秒前
lzw123456发布了新的文献求助10
11秒前
juju子完成签到 ,获得积分10
11秒前
vsdv完成签到,获得积分10
12秒前
Qee完成签到,获得积分10
12秒前
赘婿应助DuesKing采纳,获得10
12秒前
不语完成签到,获得积分10
12秒前
木槿花发布了新的文献求助10
12秒前
wyy完成签到,获得积分20
13秒前
Cherish发布了新的文献求助200
13秒前
Clover04应助学术狗采纳,获得10
13秒前
顾安安发布了新的文献求助10
13秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217557
求助须知:如何正确求助?哪些是违规求助? 2866772
关于积分的说明 8153476
捐赠科研通 2533694
什么是DOI,文献DOI怎么找? 1366407
科研通“疑难数据库(出版商)”最低求助积分说明 644764
邀请新用户注册赠送积分活动 617731