Optimization of Rocky Desertification Classification Model Based on Vegetation Type and Seasonal Characteristic

荒漠化 植被(病理学) 支持向量机 环境科学 自然地理学 遥感 地质学 地理 生态学 机器学习 计算机科学 医学 生物 病理
作者
Chunhua Qian,Hequn Qiang,Feng Wang,Mingyang Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (15): 2935-2935 被引量:12
标识
DOI:10.3390/rs13152935
摘要

Building a high-precision, stable, and universal automatic extraction model of the rocky desertification information is the premise for exploring the spatiotemporal evolution of rocky desertification. Taking Guizhou province as the research area and based on MODIS and continuous forest inventory data in China, we used a machine learning algorithm to build a rocky desertification model with bedrock exposure rate, temperature difference, humidity, and other characteristic factors and considered improving the model accuracy from the spatial and temporal dimensions. The results showed the following: (1) The supervised classification method was used to build a rocky desertification model, and the logical model, RF model, and SVM model were constructed separately. The accuracies of the models were 73.8%, 78.2%, and 80.6%, respectively, and the kappa coefficients were 0.61, 0.672, and 0.707, respectively. SVM performed the best. (2) Vegetation types and vegetation seasonal phases are closely related to rocky desertification. After combining them, the model accuracy and kappa coefficient improved to 91.1% and 0.861. (3) The spatial distribution characteristics of rocky desertification in Guizhou are obvious, showing a pattern of being heavy in the west, light in the east, heavy in the south, and light in the north. Rocky desertification has continuously increased from 2001 to 2019. In conclusion, combining the vertical spatial structure of vegetation and the differences in seasonal phase is an effective method to improve the modeling accuracy of rocky desertification, and the SVM model has the highest rocky desertification classification accuracy. The research results provide data support for exploring the spatiotemporal evolution pattern of rocky desertification in Guizhou.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茴香豆完成签到 ,获得积分10
刚刚
1秒前
3秒前
4秒前
李程发布了新的文献求助10
4秒前
4秒前
rjhgh发布了新的文献求助10
5秒前
安然发布了新的文献求助10
6秒前
星辰大海应助害羞随阴采纳,获得10
6秒前
希望天下0贩的0应助Lyncus采纳,获得20
6秒前
7秒前
RowanLuo完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
小马甲应助饭小心采纳,获得10
11秒前
和谐的忻发布了新的文献求助10
11秒前
CodeCraft应助叮当猫采纳,获得10
12秒前
lxj完成签到,获得积分10
12秒前
13秒前
沐沐发布了新的文献求助10
13秒前
缥缈芷珍完成签到,获得积分10
14秒前
14秒前
14秒前
共享精神应助欣喜的香彤采纳,获得10
14秒前
微雨发布了新的文献求助10
14秒前
15秒前
17秒前
GuGuGaGaAH完成签到 ,获得积分10
17秒前
17秒前
所所应助杨振采纳,获得10
18秒前
18秒前
18秒前
18秒前
李程发布了新的文献求助10
18秒前
科研通AI5应助echo采纳,获得10
18秒前
Syc完成签到 ,获得积分20
18秒前
19秒前
ding应助起名废人采纳,获得10
19秒前
研友_Lpaepn完成签到,获得积分10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475521
求助须知:如何正确求助?哪些是违规求助? 3067434
关于积分的说明 9103960
捐赠科研通 2758870
什么是DOI,文献DOI怎么找? 1513819
邀请新用户注册赠送积分活动 699819
科研通“疑难数据库(出版商)”最低求助积分说明 699163