快离子导体
离子电导率
材料科学
电解质
电导率
化学工程
离子键合
锂(药物)
制作
离子
无机化学
物理化学
电极
化学
有机化学
内分泌学
工程类
病理
医学
替代医学
作者
Nurbol Tolganbek,Yerkezhan Yerkinbekova,Alimzhan Khairullin,Zhumabay Bakenov,Kiyoshi Kanamura,Almаgul Mentbayeva
标识
DOI:10.1016/j.ceramint.2021.03.137
摘要
Increasing demand for safe energy storage and portable power sources has led to intensive investigation for all-solid state Li-ion batteries and particularly to solid electrolytes for such rechargeable batteries. One of the most promising types of solid electrolytes is NASICON-structured Li1.3Al0.3Ti1.7(PO4)3 (LATP) due to its relatively high ionic conductivity and stability towards air and moisture. Here, the work is aimed on implementing the steps to hinder formation of impurity phases reported for various synthesis routes. Consequently, the applied modifications in the preparation strategies alter a crystal shape and size of prepared material. These two parameters have an enormous impact on properties of LATP. Fabrication of larger particles with a cubic shape significantly improves its ionic conductivity. As a result, LATP preparation methods such as a solution chemistry and molten flux resulted in the highest ionic conductivity samples with the value of ~10−4 S cm−1 at room temperature. Other LATPs obtained by solid-state reaction, sol-gel and spray drying methods depicted the ionic conductivity of ~10−5 S cm−1. The activation energy of lithium ion transfer in LATP varied in a range of 0.25–0.4 eV, which is in well agreement with the previously reported data.
科研通智能强力驱动
Strongly Powered by AbleSci AI