亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Model-based Target Pharmacology Assessment (mTPA): An Approach Using PBPK/PD Modeling and Machine Learning to Design Medicinal Chemistry and DMPK Strategies in Early Drug Discovery

广告 基于生理学的药代动力学模型 药物发现 药代动力学 效力 药理学 化学 药效学 临床药理学 计算生物学 药品 医学 体外 生物化学 生物
作者
Emile P. Chen,Robert W. Bondi,Paul J. Michalski
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:64 (6): 3185-3196 被引量:23
标识
DOI:10.1021/acs.jmedchem.0c02033
摘要

The optimal pharmacokinetic (PK) required for a drug candidate to elicit efficacy is highly dependent on the targeted pharmacology, a relationship that is often not well characterized during early phases of drug discovery. Generic assumptions around PK and potency risk misguiding screening and compound design toward nonoptimal absorption, distribution, metabolism, and excretion (ADME) or molecular properties and ultimately may increase attrition as well as hit-to-lead and lead optimization timelines. The present work introduces model-based target pharmacology assessment (mTPA), a computational approach combining physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling, sensitivity analysis, and machine learning (ML) to elucidate the optimal combination of PK, potency, and ADME specific for the targeted pharmacology. Examples using frequently encountered PK/PD relationships are presented to illustrate its application, and the utility and benefits of deploying such an approach to guide early discovery efforts are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzqqqq发布了新的文献求助10
4秒前
zzzzqqqq完成签到,获得积分20
8秒前
9秒前
10秒前
15秒前
香蕉觅云应助呆萌的访枫采纳,获得10
17秒前
伊祁夜明完成签到,获得积分10
18秒前
li发布了新的文献求助10
20秒前
li完成签到,获得积分10
27秒前
30秒前
一个好昵称完成签到 ,获得积分10
30秒前
33秒前
一日落叶发布了新的文献求助10
36秒前
搜集达人应助光轮2000采纳,获得10
42秒前
47秒前
hahahan完成签到 ,获得积分10
54秒前
55秒前
56秒前
57秒前
丛士乔完成签到 ,获得积分10
1分钟前
星辰大海应助cjfc采纳,获得10
1分钟前
000发布了新的文献求助10
1分钟前
光轮2000发布了新的文献求助10
1分钟前
uery完成签到,获得积分10
1分钟前
蓝胖子发布了新的文献求助10
1分钟前
1分钟前
香豆素完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
典雅绮兰完成签到 ,获得积分10
1分钟前
cjfc发布了新的文献求助10
1分钟前
NexusExplorer应助mm采纳,获得10
1分钟前
lijiawei完成签到,获得积分10
1分钟前
1分钟前
Ava应助cjfc采纳,获得10
1分钟前
Mr完成签到 ,获得积分10
1分钟前
HaonanZhang发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
嘿嘿应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603230
求助须知:如何正确求助?哪些是违规求助? 4688306
关于积分的说明 14853219
捐赠科研通 4687948
什么是DOI,文献DOI怎么找? 2540480
邀请新用户注册赠送积分活动 1506962
关于科研通互助平台的介绍 1471508