Highly Absorbing Lead-Free Semiconductor Cu2AgBiI6 for Photovoltaic Applications from the Quaternary CuI–AgI–BiI3 Phase Space

化学 带隙 卤化物 光致发光 钙钛矿(结构) 半导体 光伏 八面体 碘化物 激子 吸收(声学) 薄膜 直接和间接带隙 结晶学 光电子学 光伏系统 晶体结构 纳米技术 无机化学 材料科学 凝聚态物理 物理 生物 复合材料 生态学
作者
Harry C. Sansom,Giulia Longo,Adam D. Wright,Leonardo R. V. Buizza,Suhas Mahesh,Bernard Wenger,Marco Zanella,Mojtaba Abdi‐Jalebi,Michael J. Pitcher,Matthew S. Dyer,Troy D. Manning,Richard H. Friend,Laura M. Herz,Henry J. Snaith,John B. Claridge,Matthew J. Rosseinsky
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (10): 3983-3992 被引量:72
标识
DOI:10.1021/jacs.1c00495
摘要

Since the emergence of lead halide perovskites for photovoltaic research, there has been mounting effort in the search for alternative compounds with improved or complementary physical, chemical, or optoelectronic properties. Here, we report the discovery of Cu2AgBiI6: a stable, inorganic, lead-free wide-band-gap semiconductor, well suited for use in lead-free tandem photovoltaics. We measure a very high absorption coefficient of 1.0 × 105 cm–1 near the absorption onset, several times that of CH3NH3PbI3. Solution-processed Cu2AgBiI6 thin films show a direct band gap of 2.06(1) eV, an exciton binding energy of 25 meV, a substantial charge-carrier mobility (1.7 cm2 V–1 s–1), a long photoluminescence lifetime (33 ns), and a relatively small Stokes shift between absorption and emission. Crucially, we solve the structure of the first quaternary compound in the phase space among CuI, AgI and BiI3. The structure includes both tetrahedral and octahedral species which are open to compositional tuning and chemical substitution to further enhance properties. Since the proposed double-perovskite Cs2AgBiI6 thin films have not been synthesized to date, Cu2AgBiI6 is a valuable example of a stable Ag+/Bi3+ octahedral motif in a close-packed iodide sublattice that is accessed via the enhanced chemical diversity of the quaternary phase space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苹果追命完成签到,获得积分20
1秒前
1秒前
烟花应助8564523采纳,获得10
1秒前
lkl完成签到 ,获得积分10
1秒前
01259发布了新的文献求助10
2秒前
2秒前
金子完成签到,获得积分10
2秒前
阳光下的星星完成签到,获得积分10
2秒前
顾己发布了新的文献求助10
2秒前
搁浅发布了新的文献求助10
2秒前
大桶水果茶完成签到,获得积分10
2秒前
闪闪飞机发布了新的文献求助10
3秒前
打打应助蔡蔡不菜菜采纳,获得10
3秒前
艺玲发布了新的文献求助10
3秒前
4秒前
坚果发布了新的文献求助10
4秒前
宋嬴一发布了新的文献求助10
4秒前
sweetbearm应助丞诺采纳,获得10
4秒前
4秒前
情怀应助缥缈的碧萱采纳,获得10
4秒前
一株多肉完成签到,获得积分10
5秒前
柯柯完成签到,获得积分10
5秒前
是赤赤呀完成签到,获得积分10
5秒前
阮人雄完成签到,获得积分10
5秒前
王饱饱完成签到 ,获得积分10
5秒前
Mr_Hao完成签到,获得积分10
6秒前
Keira_Chang完成签到,获得积分10
6秒前
起承转合完成签到 ,获得积分10
6秒前
风姿物语完成签到,获得积分10
7秒前
xiaopeng完成签到,获得积分10
7秒前
Jenny应助艺玲采纳,获得10
8秒前
一平发布了新的文献求助80
8秒前
樱桃味的火苗完成签到,获得积分10
8秒前
8秒前
波波完成签到,获得积分10
9秒前
322628完成签到,获得积分10
9秒前
领导范儿应助silong采纳,获得10
9秒前
身为风帆发布了新的文献求助10
9秒前
applepie完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672