亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-Lancet: Locating Error-inducing Neurons to Optimize Neural Networks

计算机科学 追踪 跟踪(心理语言学) 深层神经网络 人工神经网络 人工智能 深度学习 后门 机器学习 软件 错误检测和纠正 算法 操作系统 程序设计语言 哲学 语言学 计算机安全
作者
Yue Zhao,Hong Zhu,Kai Chen,Shengzhi Zhang
标识
DOI:10.1145/3460120.3484818
摘要

Deep neural network (DNN) has been widely utilized in many areas due to its increasingly high accuracy. However, DNN models could also produce wrong outputs due to internal errors, which may lead to severe security issues. Unlike fixing bugs in traditional computer software, tracing the errors in DNN models and fixing them are much more difficult due to the uninterpretability of DNN. In this paper, we present a novel and systematic approach to trace and fix the errors in deep learning models. In particular, we locate the error-inducing neurons that play a leading role in the erroneous output. With the knowledge of error-inducing neurons, we propose two methods to fix the errors: the neuron-flip and the neuron-fine-tuning. We evaluate our approach using five different training datasets and seven different model architectures. The experimental results demonstrate its efficacy in different application scenarios, including backdoor removal and general defects fixing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
18秒前
tiantian完成签到 ,获得积分10
20秒前
顾矜应助zzb采纳,获得10
21秒前
25秒前
zzb完成签到,获得积分10
29秒前
31秒前
zzb发布了新的文献求助10
31秒前
39秒前
41秒前
默己完成签到 ,获得积分10
45秒前
小张真的困啦完成签到,获得积分10
52秒前
null应助小张真的困啦采纳,获得10
56秒前
56秒前
1分钟前
1分钟前
皮皮发布了新的文献求助10
1分钟前
小二郎应助顾绯采纳,获得10
1分钟前
1分钟前
1分钟前
Ava应助皮皮采纳,获得10
1分钟前
1分钟前
1分钟前
Tingshuo发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Tingshuo完成签到,获得积分10
1分钟前
皮皮完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
顾绯发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Ariel完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
合适的如天完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913668
捐赠科研通 4748953
什么是DOI,文献DOI怎么找? 2549283
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474091