CorLab-Net: Anatomical Dependency-Aware Point-Cloud Learning for Automatic Labeling of Coronary Arteries

计算机科学 动脉 点云 冠状动脉疾病 冠状动脉 人工智能 计算机视觉 心脏病学 医学
作者
Xiao Zhang,Zhiming Cui,Jun Feng,Yanli Song,Dijia Wu,Dinggang Shen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 576-585 被引量:9
标识
DOI:10.1007/978-3-030-87589-3_59
摘要

Automatic coronary artery labeling is essential yet challenging step in coronary artery disease diagnosis for clinician. Previous methods typically overlooked rich relationships with heart chamber and also morphological features of coronary artery. In this paper, we propose a novel point-cloud learning method (called CorLab-Net), which comprehensively captures both inter-organ and intra-artery spatial dependencies as explicit guidance to assist the labeling of these challenging coronary vessels. Specifically, given a 3D point cloud extracted from the segmented coronary artery, our CorLab-Net improves artery labeling from three aspects: First, it encodes the inter-organ anatomical dependency between vessels and heart chambers (in terms of spatial distance field) to effectively locate the blood vessels. Second, it extracts the intra-artery anatomical dependency between vessel points and key joint points (in terms of morphological distance field) to precisely identify different vessel branches at the junctions. Third, it enhances the intra-artery local dependency between neighboring points (by using graph convolutional modules) to correct labeling outliers and improve consistency, especially at the vascular endings. We evaluated our method on a real-clinical dataset. Extensive experiments show that CorLab-Net significantly outperformed the state-of-the-art methods in labeling coronary arteries with large appearance-variance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助阔达如柏采纳,获得10
刚刚
1秒前
杨颂扬完成签到,获得积分10
1秒前
Jasper应助椰子糖采纳,获得10
1秒前
Apricity应助论文侠采纳,获得10
1秒前
852应助椰子糖采纳,获得10
1秒前
slmple关注了科研通微信公众号
2秒前
赘婿应助CT采纳,获得10
2秒前
jk完成签到,获得积分10
2秒前
完美世界应助贪玩采纳,获得10
3秒前
Avery发布了新的文献求助10
3秒前
小蘑菇应助标致忆霜采纳,获得10
3秒前
潺潺流水完成签到,获得积分10
3秒前
HCl关闭了HCl文献求助
3秒前
4秒前
彭于晏应助行者无疆采纳,获得10
4秒前
mf发布了新的文献求助10
4秒前
嘟嘟完成签到,获得积分10
4秒前
花痴的幻然完成签到,获得积分10
4秒前
科研通AI6应助胖达采纳,获得10
5秒前
嘟嘟嘟发布了新的文献求助10
5秒前
小土豆完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
乐乐应助孙傲采纳,获得10
6秒前
潺潺流水发布了新的文献求助10
6秒前
三星级读书完成签到,获得积分10
6秒前
7秒前
whatever应助xiami采纳,获得20
7秒前
7秒前
7秒前
元气马完成签到,获得积分10
8秒前
长理物电强完成签到,获得积分10
8秒前
8秒前
Jane完成签到,获得积分10
8秒前
8秒前
桐桐应助钩子89采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401