Novel thermoelectric performance of 2D 1T- Se2Te and SeTe2 with ultralow lattice thermal conductivity but high carrier mobility

热电效应 材料科学 电子迁移率 热电材料 凝聚态物理 热导率 带隙 有效质量(弹簧-质量系统) 光电子学 热力学 物理 量子力学 复合材料
作者
Shaobo Chen,Wang-Li Tao,Yu Zhou,Zhao-Yi Zeng,Xiang-Rong Chen,Hua-Yun Geng
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:32 (45): 455401-455401 被引量:20
标识
DOI:10.1088/1361-6528/ac1a91
摘要

The design and search for efficient thermoelectric materials that can directly convert waste heat into electricity have been of great interest in recent years since they have practical applications in overcoming the challenges of global warming and the energy crisis. In this work, two new two-dimensional 1T-phase group-VI binary compounds Se2Te and SeTe2 with outstanding thermoelectric performances are predicted using first-principles calculations combined with Boltzmann transport theory. The dynamic stability is confirmed based on phonon dispersion. It is found that the spin–orbit coupling effect has a significant impact on the band structure of SeTe2, and induces a transformation from indirect to direct band gap. The electronic and phononic transport properties of the Se2Te and SeTe2 monolayer are calculated and discussed. High carrier mobility (up to 3744.321 and 2295.413 cm2 V−1 S−1 for electron and hole, respectively) is exhibited, suggesting great applications in nanoelectronic devices. Furthermore, the maximum thermoelectric figure of merit zT of SeTe2 for n-type and p-type is 2.88, 1.99 and 5.94, 3.60 at 300 K and 600 K, respectively, which is larger than that of most reported 2D thermoelectric materials. The surprising thermoelectric properties arise from the ultralow lattice thermal conductivity kl (0.25 and 1.89 W m−1 K−1 for SeTe2 and Se2Te at 300 K), and the origin of ultralow lattice thermal conductivity is revealed. The present results suggest that 1T-phase Se2Te and SeTe2 monolayer are promising candidates for thermoelectric applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhidong Wei完成签到,获得积分10
刚刚
dounai完成签到,获得积分10
刚刚
1秒前
2秒前
wq发布了新的文献求助10
3秒前
牛马人生发布了新的文献求助10
3秒前
zhu完成签到,获得积分10
3秒前
3秒前
脑洞疼应助柚子采纳,获得10
5秒前
7秒前
7秒前
文艺的口红完成签到 ,获得积分10
7秒前
仲夏发布了新的文献求助10
7秒前
桐桐应助谜湖采纳,获得10
8秒前
8秒前
标致的傲之完成签到,获得积分10
8秒前
spike完成签到,获得积分10
8秒前
wq完成签到,获得积分10
9秒前
111完成签到,获得积分10
10秒前
10秒前
fd163c完成签到,获得积分10
10秒前
zhw应助hhhhhhh采纳,获得10
11秒前
11秒前
xxc发布了新的文献求助10
12秒前
搞对完成签到,获得积分10
12秒前
12秒前
小翼应助李嘉图的栗子采纳,获得10
13秒前
13秒前
yzk关闭了yzk文献求助
13秒前
rosenkranz关注了科研通微信公众号
14秒前
yyt发布了新的文献求助10
14秒前
15秒前
木槿发布了新的文献求助10
17秒前
Zzzz完成签到,获得积分10
17秒前
devil发布了新的文献求助10
18秒前
蒲公英发布了新的文献求助10
19秒前
19秒前
邓淑君发布了新的文献求助30
19秒前
打打应助smile采纳,获得10
19秒前
宇文青寒发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551910
求助须知:如何正确求助?哪些是违规求助? 3128345
关于积分的说明 9377313
捐赠科研通 2827348
什么是DOI,文献DOI怎么找? 1554303
邀请新用户注册赠送积分活动 725429
科研通“疑难数据库(出版商)”最低求助积分说明 714834