亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction

计算机科学 嵌入 杠杆(统计) 卷积神经网络 图形 特征学习 代表(政治) 人工智能 机器学习 图嵌入 水准点(测量) 理论计算机科学 政治 地理 法学 大地测量学 政治学
作者
Jin Yuan,Jiarui Lu,Runhan Shi,Yang Yang
出处
期刊:Biomolecules [MDPI AG]
卷期号:11 (12): 1783-1783 被引量:17
标识
DOI:10.3390/biom11121783
摘要

The identification of drug-target interaction (DTI) plays a key role in drug discovery and development. Benefitting from large-scale drug databases and verified DTI relationships, a lot of machine-learning methods have been developed to predict DTIs. However, due to the difficulty in extracting useful information from molecules, the performance of these methods is limited by the representation of drugs and target proteins. This study proposes a new model called EmbedDTI to enhance the representation of both drugs and target proteins, and improve the performance of DTI prediction. For protein sequences, we leverage language modeling for pretraining the feature embeddings of amino acids and feed them to a convolutional neural network model for further representation learning. For drugs, we build two levels of graphs to represent compound structural information, namely the atom graph and substructure graph, and adopt graph convolutional network with an attention module to learn the embedding vectors for the graphs. We compare EmbedDTI with the existing DTI predictors on two benchmark datasets. The experimental results show that EmbedDTI outperforms the state-of-the-art models, and the attention module can identify the components crucial for DTIs in compounds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
小白加油完成签到 ,获得积分10
15秒前
15秒前
又声完成签到,获得积分10
22秒前
xiha西希完成签到,获得积分10
24秒前
pleiotropy完成签到 ,获得积分10
25秒前
Ferry完成签到,获得积分10
27秒前
32秒前
电量过低完成签到 ,获得积分10
33秒前
41秒前
隐形曼青应助Seeking采纳,获得10
54秒前
yoga发布了新的文献求助10
59秒前
酷波er应助卿筠采纳,获得10
1分钟前
乐乐应助Cmqq采纳,获得10
1分钟前
1分钟前
Seeking发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
yummy发布了新的文献求助10
1分钟前
浪里白条完成签到,获得积分10
1分钟前
jml完成签到,获得积分10
1分钟前
汉堡包应助调皮友安采纳,获得10
1分钟前
天天快乐应助Cmqq采纳,获得10
1分钟前
无情的瑾瑜完成签到,获得积分10
1分钟前
机智夜梦发布了新的文献求助200
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
调皮友安发布了新的文献求助10
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
Tracy完成签到 ,获得积分10
2分钟前
zsc668完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685483
关于积分的说明 14838528
捐赠科研通 4670394
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904