亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction

计算机科学 嵌入 杠杆(统计) 卷积神经网络 图形 特征学习 代表(政治) 人工智能 机器学习 图嵌入 水准点(测量) 理论计算机科学 政治 地理 法学 大地测量学 政治学
作者
Jin Yuan,Jiarui Lu,Runhan Shi,Yang Yang
出处
期刊:Biomolecules [MDPI AG]
卷期号:11 (12): 1783-1783 被引量:17
标识
DOI:10.3390/biom11121783
摘要

The identification of drug-target interaction (DTI) plays a key role in drug discovery and development. Benefitting from large-scale drug databases and verified DTI relationships, a lot of machine-learning methods have been developed to predict DTIs. However, due to the difficulty in extracting useful information from molecules, the performance of these methods is limited by the representation of drugs and target proteins. This study proposes a new model called EmbedDTI to enhance the representation of both drugs and target proteins, and improve the performance of DTI prediction. For protein sequences, we leverage language modeling for pretraining the feature embeddings of amino acids and feed them to a convolutional neural network model for further representation learning. For drugs, we build two levels of graphs to represent compound structural information, namely the atom graph and substructure graph, and adopt graph convolutional network with an attention module to learn the embedding vectors for the graphs. We compare EmbedDTI with the existing DTI predictors on two benchmark datasets. The experimental results show that EmbedDTI outperforms the state-of-the-art models, and the attention module can identify the components crucial for DTIs in compounds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
8秒前
10秒前
11秒前
17秒前
大个应助louis采纳,获得10
21秒前
畅快甜瓜发布了新的文献求助10
22秒前
Robot完成签到 ,获得积分10
25秒前
36秒前
CipherSage应助畅快甜瓜采纳,获得10
44秒前
44秒前
51秒前
59秒前
jy发布了新的文献求助10
1分钟前
1分钟前
louis发布了新的文献求助10
1分钟前
shame完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI6.1应助jy采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
空儒完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Muhammad发布了新的文献求助10
1分钟前
畅快甜瓜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
jy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
小璐发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732177
求助须知:如何正确求助?哪些是违规求助? 5337212
关于积分的说明 15322034
捐赠科研通 4877874
什么是DOI,文献DOI怎么找? 2620700
邀请新用户注册赠送积分活动 1569938
关于科研通互助平台的介绍 1526542